tsp_service.py 24.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
import datetime
import time
import math
import pandas as pd
from pot_libs.utils.exc_util import BusinessException
from unify_api import constants
from pot_libs.mysql_util.mysql_util import MysqlUtil
from unify_api.constants import PM2_5, PM10, TSP, SLOTS
from unify_api.utils.common_utils import round_2n
from unify_api.modules.common.dao.common_dao import tsp_by_cid, \
    storey_wp_by_cid, storey_pl_by_cid
from unify_api.modules.tsp_water.components.drop_dust_cps import DtResp, \
    ThResp, TisResp, DeResp, SaResp, TcdResp, TpdResp, AdResp
from unify_api.modules.tsp_water.dao.tsp_dao import meterdata_tsp_current, \
    tsp_histogram_tsp_id, tsp_index_statistics, tsp_aggs_tsp_id, \
    tsp_by_tsp_id_dao
from unify_api.modules.tsp_water.dao.tsp_map_dao import \
    get_predict_data_day_dao, get_predict_data_month_dao, get_page_data, \
    get_contrast_data_day_dao, get_contrast_data_month_dao, get_cid_tsp_dao
from unify_api.modules.tsp_water.procedures.drop_dust_pds import \
    pm2_5_trans_grade, pm10_trans_grade, tsp_trans_grade
from unify_api.modules.tsp_water.procedures.tsp_pds import per_hour_wave, \
    per_hour_kwh_wave, per_hour_water_wave, per_hour_kwh_wave_new15, \
    per_hour_wave_new15
from unify_api.utils import time_format
from unify_api.utils.common_utils import round_2, correlation, round_0
from unify_api.utils.es_query_body import es_process
from unify_api.utils.time_format import esstr_to_dthoutstr, start_end_date


async def real_time_service(tsp_id):
    """TSP信息-实时参数"""
    # 1.根据tsp_id获取redis实时数据
    tsp_dic = await meterdata_tsp_current(tsp_id)
    if not tsp_dic:
        raise BusinessException(message=f"tsp_id: {tsp_id} no redis data")
    # 2. 判断数据是否在4h之内
    now_ts = int(time.time())
    tsp_ts = tsp_dic["timestamp"]
    if now_ts - tsp_ts > constants.REAL_EXP_TIME:
        return DtResp()
    pm2_5 = tsp_dic.get("pm25", "")
    pm10 = tsp_dic.get("pm10", "")
    tsp = tsp_dic.get("tsp", "")
    return DtResp(pm2_5=pm2_5, pm10=pm10, tsp=tsp)


async def tsp_history_service(tsp_id, start, end):
    interval, slots = time_format.time_pick_transf(start, end)
    # 实时数据
    pm25_list, pm10_list, tsp_list = await \
        get_data_new15(tsp_id, start, end, slots, interval)
    # 预测数据
    pm25_predict, pm10_predict, tsp_predict, _ = \
        await get_predict_data(tsp_id, start, end, slots)
    # 对比数据
    pm25_contrast, pm10_contrast, _ = \
        await get_contrast_data(tsp_id, start, end, slots)
    return ThResp(
        pm2_5={"threshold": PM2_5, "value_slots": pm25_list},
        pm10={"threshold": PM10, "value_slots": pm10_list},
        tsp={"threshold": TSP, "value_slots": tsp_list},
        time_slots=slots,
        pm2_5_predict={"value_slots": pm25_predict},
        pm10_predict={"value_slots": pm10_predict},
        tsp_predict={"value_slots": tsp_predict},
        pm2_5_contrast={"value_slots": pm25_contrast},
        pm10_contrast={"value_slots": pm10_contrast},
    )


# tsp实时数据
async def get_data(tsp_id, start, end, slots, interval):
    """TSP信息-历史曲线"""
    # 1. 查询es
    if interval == 24 * 3600:
        interval = "day"
        fmt = "MM-DD"
    elif interval == 15 * 60:
        interval = "15m"
        fmt = "HH:mm"
    else:
        raise BusinessException(message="time range not day or month")
    es_res = await tsp_histogram_tsp_id(start, end, tsp_id, interval)
    if not es_res:
        return ThResp(pm2_5={"threshold": PM2_5, "value_slots": []},
                      pm10={"threshold": PM10, "value_slots": []},
                      tsp={"threshold": TSP, "value_slots": []},
                      time_slots=[]
                      )
    es_dic = es_process(es_res, fmat=fmt)
    # 2. 组装数据
    pm25_list = []
    pm10_list = []
    tsp_list = []
    for slot in slots:
        if slot in es_dic:
            pm25_value = round_0(es_dic[slot]["pm25"].get("avg"))
            pm10_value = round_0(es_dic[slot]["pm10"].get("avg"))
            tsp_value = round_0(es_dic[slot]["tsp"].get("avg"))
        else:
            pm25_value, pm10_value, tsp_value = "", "", ""
        pm25_list.append(pm25_value)
        pm10_list.append(pm10_value)
        tsp_list.append(tsp_value)
    return pm25_list, pm10_list, tsp_list


async def get_data_new15(tsp_id, start, end, slots, interval):
    if interval == 24 * 3600:
        sql = f'SELECT DATE_FORMAT(create_time,"%m-%d") date_time, ' \
              f'AVG(pm25_max) pm25,AVG(pm25_max) pm10,AVG(tsp_max) tsp ' \
              f'FROM `tsp_day_record` where tsp_id={tsp_id} and ' \
              f'create_time BETWEEN "{start}" and "{end}" GROUP BY date_time' \
              f' ORDER BY date_time'
    elif interval == 15 * 60:
        sql = f'SELECT DATE_FORMAT(create_time,"%H:00") date_time, ' \
              f'AVG(pm25_max) pm25,AVG(pm25_max) pm10,AVG(tsp_max) tsp ' \
              f'FROM `tsp_15min_record` where tsp_id={tsp_id} and ' \
              f'create_time BETWEEN "{start}" and "{end}" GROUP BY date_time' \
              f' ORDER BY date_time'
    else:
        raise BusinessException(message="time range not day or month")
    async with MysqlUtil() as conn:
        datas = await conn.fetchall(sql)
    datas_map = {data["date_time"]: data for data in datas}
    # 2. 组装数据
    pm25_list = []
    pm10_list = []
    tsp_list = []
    for slot in slots:
        slot_data = datas_map.get(slot)
        if slot_data:
            pm25_value = round_2n(slot_data.get("pm25"))
            pm10_value = round_2n(slot_data.get("pm10"))
            tsp_value = round_2n(slot_data.get("tsp"))
        else:
            pm25_value, pm10_value, tsp_value = None, None, None
        pm25_list.append(pm25_value)
        pm10_list.append(pm10_value)
        tsp_list.append(tsp_value)
    return pm25_list, pm10_list, tsp_list


# tsp预测数据
async def get_predict_data(tsp_id, start, end, slots):
    start_f = datetime.datetime.strptime(start, "%Y-%m-%d %H:%M:%S")
    end_f = datetime.datetime.strptime(end, "%Y-%m-%d %H:%M:%S")
    if start_f.day == end_f.day:
        # 返回当天数据 15min数据
        predict_data = await get_predict_data_day_dao(tsp_id, start_f, end_f)
        predict_slots = ["%02d:%02d" % (data["quarter_time"].hour,
                                        data["quarter_time"].minute)
                         for data in predict_data]
        date_predict = [data["quarter_time"].strftime("%Y-%m-%d %H:%M:%S")
                        for data in predict_data]
    else:
        # 返回月份数据  每天数据
        predict_data = await get_predict_data_month_dao(tsp_id, start_f, end_f)
        predict_slots = [data["quarter_time"][5:] for data in predict_data]
        date_predict = [data["quarter_time"] for data in predict_data]
    pm25_predict = [round(data["pm25"]) for data in predict_data]
    pm10_predict = [round(data["pm10"]) for data in predict_data]
    tsp_predict = [round(data["tsp"]) for data in predict_data]
    # 针对如果缺少数据处理,基本不会执行
    if len(predict_data) != len(slots):
        # 缺少时刻的时间轴
        lack_slots = list(set(slots) - set(predict_slots))
        for slot in lack_slots:
            index = slots.index(slot)
            pm25_predict.insert(index, "")
            pm10_predict.insert(index, "")
            tsp_predict.insert(index, "")
            date_predict.insert(index, "")
    return pm25_predict, pm10_predict, tsp_predict, date_predict


# 对比预测数据
async def get_contrast_data(tsp_id, start, end, slots):
    beg_f = datetime.datetime.strptime(start, "%Y-%m-%d %H:%M:%S")
    end_f = datetime.datetime.strptime(end, "%Y-%m-%d %H:%M:%S")
    if beg_f.day == end_f.day:
        # 返回当天数据 15min数据
        contrast_data = await get_contrast_data_day_dao(tsp_id, beg_f, end_f)
        contrast_slots = ["%02d:%02d" % (data["quarter_time"].hour,
                                         data["quarter_time"].minute)
                          for data in contrast_data]
        date_contrast = [data["quarter_time"].strftime("%Y-%m-%d %H:%M:%S")
                         for data in contrast_data]
    else:
        # 返回月份数据  每天数据
        contrast_data = await get_contrast_data_month_dao(tsp_id, beg_f, end_f)
        contrast_slots = [data["quarter_time"][5:] for data in contrast_data]
        date_contrast = [data["quarter_time"] for data in contrast_data]
    pm25_contrast = [round(data["pm25"]) for data in contrast_data]
    pm10_contrast = [round(data["pm10"]) for data in contrast_data]
    # 针对如果缺少数据处理,基本不会执行
    if len(contrast_data) != len(slots):
        # 缺少时刻的时间轴
        lack_slots = list(set(slots) - set(contrast_slots))
        for slot in lack_slots:
            index = slots.index(slot)
            pm25_contrast.insert(index, "")
            pm10_contrast.insert(index, "")
            date_contrast.insert(index, "")
    return pm25_contrast, pm10_contrast, date_contrast


# 预测偏差
async def tsp_predict_deviation_service(tsp_id, start, end):
    interval, slots = time_format.time_pick_transf(start, end)
    # 实时数据
    pm25, pm10, tsp = await get_data_new15(tsp_id, start, end, slots, interval)
    # 预测数据
    pm25_predict, pm10_predict, tsp_predict, date_predict = \
        await get_predict_data(tsp_id, start, end, slots)
    pm25_list, pm10_list, tsp_list = [], [], []
    pm25_time, pm10_time, tsp_time = [], [], []
    for index, value in enumerate(pm25_predict):
        if value and pm25[index]:
            pm25_time.append(date_predict[index])
            pm25_list.append(
                round(math.fabs((pm25[index]-value)/pm25[index]), 3))
    for index, value in enumerate(pm10_predict):
        if value and pm10[index]:
            pm10_time.append(date_predict[index])
            pm10_list.append(
                round(math.fabs((pm10[index]-value)/pm10[index]), 3))
    for index, value in enumerate(tsp_predict):
        if value and tsp[index]:
            tsp_time.append(date_predict[index])
            tsp_list.append(round(math.fabs((tsp[index]-value)/tsp[index]), 3))
    pm25_max, pm25_min, pm25_avg = "", "", ""
    if pm25_list:
        pm25_max, pm25_min = max(pm25_list), min(pm25_list)
        pm25_avg = round(sum(pm25_list)/len(pm25_list), 3)
    pm10_max, pm10_min, pm10_avg = "", "", ""
    if pm10_list:
        pm10_max, pm10_min = max(pm10_list), min(pm10_list)
        pm10_avg = round(sum(pm10_list)/len(pm10_list), 3)
    tsp_max, tsp_min, tsp_avg = "", "", ""
    if tsp_list:
        tsp_max, tsp_min = max(tsp_list), min(tsp_list)
        tsp_avg = round(sum(tsp_list) / len(tsp_list), 3)

    return TpdResp(pm2_5={
        "max": pm25_max, "min": pm25_min, "avg": pm25_avg,
        "max_time": pm25_time[pm25_list.index(pm25_max)] if pm25_max != "" else "",
        "min_time": pm25_time[pm25_list.index(pm25_min)] if pm25_min != "" else ""
    }, pm10={
        "max": pm10_max, "min": pm10_min, "avg": pm10_avg,
        "max_time": pm10_time[pm10_list.index(pm10_max)] if pm10_max != "" else "",
        "min_time": pm10_time[pm10_list.index(pm10_min)] if pm10_min != "" else "",
    }, tsp={
        "max": tsp_max, "min": tsp_min, "avg": tsp_avg,
        "max_time": tsp_time[tsp_list.index(tsp_max)] if tsp_max != "" else "",
        "min_time": tsp_time[tsp_list.index(tsp_min)] if tsp_min != "" else ""
    })


# 对比偏差
async def tsp_contrast_deviation_service(tsp_id, start, end):
    interval, slots = time_format.time_pick_transf(start, end)
    # 实时数据
    pm25, pm10, tsp = await get_data_new15(tsp_id, start, end, slots, interval)
    # 对比数据
    pm25_contrast, pm10_contrast, date_contrast = \
        await get_contrast_data(tsp_id, start, end, slots)
    pm25_list, pm10_list = [], []
    pm25_time, pm10_time = [], []
    for index, value in enumerate(pm25_contrast):
        if value and pm25[index]:
            pm25_time.append(date_contrast[index])
            pm25_list.append(
                round(math.fabs((pm25[index] - value) / pm25[index]), 3))
    for index, value in enumerate(pm10_contrast):
        if value and pm10[index]:
            pm10_time.append(date_contrast[index])
            pm10_list.append(
                round(math.fabs((pm10[index] - value) / pm10[index]), 3))
    pm25_max, pm25_min, pm25_avg = "", "", ""
    if pm25_list:
        pm25_max, pm25_min = max(pm25_list), min(pm25_list)
        pm25_avg = round(sum(pm25_list) / len(pm25_list), 3)
    pm10_max, pm10_min, pm10_avg = "", "", ""
    if pm10_list:
        pm10_max, pm10_min = max(pm10_list), min(pm10_list)
        pm10_avg = round(sum(pm10_list) / len(pm10_list), 3)
    return TcdResp(pm2_5={
        "max": pm25_max, "min": pm25_min, "avg": pm25_avg,
        "max_time": pm25_time[pm25_list.index(pm25_max)] if pm25_max != "" else "",
        "min_time": pm25_time[pm25_list.index(pm25_min)] if pm25_min != "" else ""
    }, pm10={
        "max": pm10_max, "min": pm10_min, "avg": pm10_avg,
        "max_time": pm10_time[pm10_list.index(pm10_max)] if pm10_max != "" else "",
        "min_time": pm10_time[pm10_list.index(pm10_min)] if pm10_min != "" else "",
    })


async def tsp_index_statistics_service(tsp_id, start, end):
    """TSP信息-指标统计"""
    # 1. 查询es
    es_res = await tsp_index_statistics(start, end, tsp_id)
    if not es_res:
        return TisResp()
    # 2.1 pm25
    # max
    pm25_max = ""
    pm25_max_time = ""
    pm_25_max_hits = es_res["pm25_max"]["hits"]["hits"]
    if pm_25_max_hits:
        pm25_max = round_2(pm_25_max_hits[0]["_source"].get("pm25_max"))
        pm25_max_time = esstr_to_dthoutstr(
            pm_25_max_hits[0]["_source"].get("pm25_max_time"),
            format="%Y-%m-%d %H:%M:%S")
    # min
    pm25_min = ""
    pm25_min_time = ""
    pm_25_min_hits = es_res["pm25_min"]["hits"]["hits"]
    if pm_25_min_hits:
        pm25_min = round_2(pm_25_min_hits[0]["_source"].get("pm25_min"))
        pm25_min_time = esstr_to_dthoutstr(
            pm_25_min_hits[0]["_source"].get("pm25_min_time"),
            format="%Y-%m-%d %H:%M:%S")
    # avg
    pm25_avg = ""
    if es_res["pm25_avg"].get("value"):
        pm25_avg = round(es_res["pm25_avg"].get("value"))

    # 2.2 pm10
    # max
    pm10_max = ""
    pm10_max_time = ""
    pm_10_max_hits = es_res["pm10_max"]["hits"]["hits"]
    if pm_10_max_hits:
        pm10_max = round_2(pm_10_max_hits[0]["_source"].get("pm10_max"))
        pm10_max_time = esstr_to_dthoutstr(
            pm_10_max_hits[0]["_source"].get("pm10_max_time"),
            format="%Y-%m-%d %H:%M:%S")
    # min
    pm10_min = ""
    pm10_min_time = ""
    pm_10_min_hits = es_res["pm10_min"]["hits"]["hits"]
    if pm_10_min_hits:
        pm10_min = round_2(pm_10_min_hits[0]["_source"].get("pm10_min"))
        pm10_min_time = esstr_to_dthoutstr(
            pm_10_min_hits[0]["_source"].get("pm10_min_time"),
            format="%Y-%m-%d %H:%M:%S")
    # avg
    pm10_avg = ""
    if es_res["pm10_avg"].get("value"):
        pm10_avg = round(es_res["pm10_avg"].get("value"))

    # 2.3 tsp
    # max
    tsp_max = ""
    tsp_max_time = ""
    tsp_max_hits = es_res["tsp_max"]["hits"]["hits"]
    if tsp_max_hits:
        tsp_max = round_2(tsp_max_hits[0]["_source"].get("tsp_max"))
        tsp_max_time = esstr_to_dthoutstr(
            tsp_max_hits[0]["_source"].get("tsp_max_time"),
            format="%Y-%m-%d %H:%M:%S")
    # min
    tsp_min = ""
    tsp_min_time = ""
    tsp_min_hits = es_res["tsp_min"]["hits"]["hits"]
    if tsp_min_hits:
        tsp_min = round_2(tsp_min_hits[0]["_source"].get("tsp_min"))
        tsp_min_time = esstr_to_dthoutstr(
            tsp_min_hits[0]["_source"].get("tsp_min_time"),
            format="%Y-%m-%d %H:%M:%S")
    # avg
    tsp_avg = ""
    if es_res["tsp_avg"].get("value"):
        tsp_avg = round(es_res["tsp_avg"].get("value"))

    return TisResp(pm2_5={"max": pm25_max,
                          "max_time": pm25_max_time,
                          "min": pm25_min,
                          "min_time": pm25_min_time,
                          "avg": pm25_avg},
                   pm10={"max": pm10_max,
                         "max_time": pm10_max_time,
                         "min": pm10_min,
                         "min_time": pm10_min_time,
                         "avg": pm10_avg},
                   tsp={"max": tsp_max,
                        "max_time": tsp_max_time,
                        "min": tsp_min,
                        "min_time": tsp_min_time,
                        "avg": tsp_avg},
                   )


async def tsp_index_statistics_service_new15(tsp_id, start, end):
    now = str(datetime.datetime.now())
    if start[:10] == now[:10] and end[:10] == now[:10]:
        table_name = "tsp_15min_record"
    else:
        table_name = "tsp_day_record"
    sql = f"SELECT pm25_max,pm25_max_time,pm25_min,pm25_min_time," \
          f"pm10_max,pm10_max_time,pm10_min,pm10_min_time," \
          f"tsp_max,tsp_max_time,tsp_min,tsp_min_time" \
          f" FROM {table_name} where tsp_id=%s and create_time " \
          f"BETWEEN '{start}' and '{end}' ORDER BY create_time"
    async with MysqlUtil() as conn:
        datas = await conn.fetchall(sql, args=(tsp_id, ))
    if not datas:
        return TisResp()
    df = pd.DataFrame(list(datas))
    pm25_max = df["pm25_max"].max()
    pm25_max, pm25_max_time = get_max_min_time(df, pm25_max, "pm25_max")
    pm25_min = df["pm25_min"].min()
    pm25_min, pm25_min_time = get_max_min_time(df, pm25_min, "pm25_min")
    pm10_max = df["pm10_max"].max()
    pm10_max, pm10_max_time = get_max_min_time(df, pm10_max, "pm10_max")
    pm10_min = df["pm10_min"].min()
    pm10_min, pm10_min_time = get_max_min_time(df, pm10_min, "pm10_min")
    tsp_max = df["tsp_max"].max()
    tsp_max, tsp_max_time = get_max_min_time(df, tsp_max, "tsp_max")
    tsp_min = df["tsp_min"].min()
    tsp_min, tsp_min_time = get_max_min_time(df, tsp_min, "tsp_min")
    pm25_avg_value = df["pm25_max"].mean()
    pm25_avg_value = round(pm25_avg_value, 2) if pm25_avg_value else ""
    pm10_avg_value = df["pm10_max"].mean()
    pm10_avg_value = round(pm10_avg_value, 2) if pm10_avg_value else ""
    tsp_avg_value = df["tsp_max"].mean()
    tsp_avg_value = round(tsp_avg_value, 2) if tsp_avg_value else ""
    return TisResp(pm2_5={"max": pm25_max,
                          "max_time": pm25_max_time,
                          "min": pm25_min,
                          "min_time": pm25_min_time,
                          "avg": pm25_avg_value},
                   pm10={"max": pm10_max,
                         "max_time": pm10_max_time,
                         "min": pm10_min,
                         "min_time": pm10_min_time,
                         "avg": pm10_avg_value},
                   tsp={"max": tsp_max,
                        "max_time": tsp_max_time,
                        "min": tsp_min,
                        "min_time": tsp_min_time,
                        "avg": tsp_avg_value},
                   )


def get_max_min_time(df, max_value, name):
    if not pd.isna(max_value):
        max_datas = df.loc[df[name].idxmax()].to_dict()
        max_time = max_datas.get(f"{name}_time")
        max_time = '' if pd.isnull(max_time) else str(max_time)
        max_value = round_2(max_value)
    else:
        max_value, max_time = "", ""
    return max_value, max_time


async def day_env_service(cid):
    """当日环境"""
    # 需求逻辑
    # 求每个tsp装置pm2.5,pm10,tsp的平均值
    # 取平均值高的pm2.5,pm10,tsp
    today_start, today_end, m_start, m_end = start_end_date()
    # 1. 根据cid取tsp_id_list
    tsp_list = await tsp_by_cid(cid)
    tsp_id_list = [i["tsp_id"] for i in tsp_list]
    # 2. 取es数据
    es_res = await tsp_aggs_tsp_id(today_start, today_end, tsp_id_list)
    if not es_res:
        return DeResp(pm2_5={"data": "", "grade": ""},
                      pm10={"data": "", "grade": ""},
                      tsp={"data": "", "grade": ""})
    pm2_5_max = 0
    pm10_max = 0
    tsp_max = 0
    for info in es_res:
        pm2_5 = round(info["pm25"]["value"])
        if pm2_5 > pm2_5_max:
            pm2_5_max = pm2_5

        pm10 = round(info["pm10"]["value"])
        if pm10 > pm10_max:
            pm10_max = pm10

        tsp = round(info["tsp"]["value"])
        if tsp > tsp_max:
            tsp_max = tsp
    # 调用函数,获取等级
    pm2_5_grade = pm2_5_trans_grade(pm2_5_max)
    pm10_grade = pm10_trans_grade(pm10_max)
    tsp_grade = tsp_trans_grade(tsp_max)
    # 3. 返回
    return DeResp(
        pm2_5={"data": pm2_5_max, "grade": pm2_5_grade},
        pm10={"data": pm10_max, "grade": pm10_grade},
        tsp={"data": tsp_max, "grade": tsp_grade}
    )


async def day_env_service_new15(cid):
    """当日环境"""
    # 需求逻辑
    # 求每个tsp装置pm2.5,pm10,tsp的平均值
    # 取平均值高的pm2.5,pm10,tsp
    today_start, today_end, m_start, m_end = start_end_date()
    # 1. 根据cid取tsp_id_list
    tsp_list = await tsp_by_cid(cid)
    tsp_id_list = [i["tsp_id"] for i in tsp_list]
    sql_res = await tsp_by_tsp_id_dao(today_start, today_end, tsp_id_list)
    if not sql_res:
        return DeResp(pm2_5={"data": "", "grade": ""},
                      pm10={"data": "", "grade": ""},
                      tsp={"data": "", "grade": ""})
    pm2_5_max = 0
    pm10_max = 0
    tsp_max = 0
    for info in sql_res:
        pm2_5 = round_2(info["pm25"]) if info["pm25"] else 0
        if pm2_5 > pm2_5_max:
            pm2_5_max = pm2_5
        pm10 = round_2(info["pm10"]) if info["pm10"] else 0
        if pm10 > pm10_max:
            pm10_max = pm10

        tsp = round_2(info["tsp"]) if info["tsp"] else 0
        if tsp > tsp_max:
            tsp_max = tsp
    # 调用函数,获取等级
    pm2_5_grade = pm2_5_trans_grade(pm2_5_max)
    pm10_grade = pm10_trans_grade(pm10_max)
    tsp_grade = tsp_trans_grade(tsp_max)
    # 3. 返回
    return DeResp(
        pm2_5={"data": pm2_5_max, "grade": pm2_5_grade},
        pm10={"data": pm10_max, "grade": pm10_grade},
        tsp={"data": tsp_max, "grade": tsp_grade}
    )


async def stat_analysis_service(cid, tsp_id, start, end):
    """统计分析-扬尘"""
    # 1. 查询es, 获取tsp信息
    pm25_list, pm10_list, tsp_list, slots = await per_hour_wave_new15(
        start, end, tsp_id)
    # 2. 获取雾炮电量数据
    storey_list = await storey_wp_by_cid(cid)
    point_list = [storey["point_id"] for storey in storey_list]
    kwh_res, slots = await per_hour_kwh_wave_new15(start, end, point_list)

    r_gun_pm25_value, r_gun_pm25_info = correlation(kwh_res, pm25_list)
    r_gun_pm10_value, r_gun_pm10_info = correlation(kwh_res, pm10_list)
    r_gun_tsp_value, r_gun_tsp_info = correlation(kwh_res, tsp_list)

    # 3. 获取喷淋水量数据
    water_res = await per_hour_water_wave(start, end)

    r_water_pm25_value, r_water_pm25_info = correlation(water_res, pm25_list)
    r_water_pm10_value, r_water_pm10_info = correlation(water_res, pm10_list)
    r_water_tsp_value, r_water_tsp_info = correlation(water_res, tsp_list)
    return SaResp(
        pm2_5=pm25_list,
        pm10=pm10_list,
        tsp=tsp_list,
        time_slots=slots,
        fog_gun=kwh_res,
        water=water_res,
        r_gun_pm25={"r": r_gun_pm25_value, "name": r_gun_pm25_info},
        r_gun_pm10={"r": r_gun_pm10_value, "name": r_gun_pm10_info},
        r_gun_tsp={"r": r_gun_tsp_value, "name": r_gun_tsp_info},
        r_water_pm25={"r": r_water_pm25_value, "name": r_water_pm25_info},
        r_water_pm10={"r": r_water_pm10_value, "name": r_water_pm10_info},
        r_water_tsp={"r": r_water_tsp_value, "name": r_water_tsp_info},
    )


async def analysis_describe_service(cid, start, end, page_num, page_size,
                                    measure_type):
    data = await get_cid_tsp_dao(cid, start, end, measure_type)
    page_date = await get_page_data(cid, start, end, page_num, page_size,
                                    measure_type)
    page_list = []
    for page in page_date:
        start_datetime = page["start_datetime"].strftime("%Y-%m-%d %H:%M:%S")
        end_datetime = page["end_datetime"].strftime("%Y-%m-%d %H:%M:%S")
        page_list.append({
            "datetime": f"{start_datetime[:16]}-{end_datetime[11:16]}",
            "effective": page["measure_msg"],
            "is_effective": page["is_valid"],
            "message": page["effect"]
        })
    effective_rate = f"{round(data['effect']/data['measures'],2)*100}%" \
        if data['measures'] else 0
    return AdResp(
        all_count=data["measures"] or 0,
        effective_count=data["effect"] or 0,
        effective_rate=effective_rate,
        page_data=page_list
    )