proxy_optimization_pds.py 18.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
from pot_libs.logger import log
from pot_libs.mysql_util.mysql_util import MysqlUtil
from unify_api.modules.common.procedures.cids import get_cid_info
from unify_api.modules.common.procedures.power_cps import inline_power_use_info


async def get_inline_datas_dao(cids):
    inline_sql = f"select `inlid`, `name`, cid cid, " \
                 f"`inline_tc`, `tc_runtime` from `inline` " \
                 f"where cid in %s order by cid"
    async with MysqlUtil() as conn:
        inlines = await conn.fetchall(inline_sql, args=(cids,)) if cids else []
    inline_map = {i["inlid"]: i for i in inlines}
    inline_cid_map = {i["inlid"]: i["cid"] for i in inlines}
    return inline_map, inline_cid_map


async def get_power_factor_results(inline_ids, month_str):
    async with MysqlUtil() as conn:
        pf_sql = f"select inlid,cos,save_charge pf_cost,save_charge, kpi_x " \
                 f" from algo_power_factor_result where inlid in %s " \
                 f"and month = %s"
        power_factors = (
            await conn.fetchall(pf_sql, args=(
                inline_ids, month_str)) if inline_ids else []
        )
    return power_factors


async def proxy_power_factor_summary(cids, month_str, inline_map=None):
    if not inline_map:
        inline_map, inline_cid_map = await get_inline_datas_dao(cids)
    inline_ids = list(inline_map.keys())
    power_factors = await get_power_factor_results(inline_ids, month_str)

    unqualified_cnt = 0
    first_level_cnt = 0
    second_level_cnt = 0
    third_level_cnt = 0
    fourth_level_cnt = 0
    fifth_level_cnt = 0

    total_save_charge = round(
        sum(
            [
                round(i["save_charge"], 2)
                for i in power_factors
                if type(i["save_charge"]) in [int, float] and i[
                "save_charge"] >= 0
            ]
        ),
        2,
    )
    for pf_res in power_factors:
        power_factor = pf_res["kpi_x"]
        if power_factor < 0.9:
            unqualified_cnt += 1

        if power_factor < 0.8:
            fifth_level_cnt += 1
        elif 0.8 <= power_factor < 0.85:
            fourth_level_cnt += 1
        elif 0.85 <= power_factor < 0.9:
            third_level_cnt += 1
        elif 0.9 <= power_factor < 0.95:
            second_level_cnt += 1
        else:
            first_level_cnt += 1
    return {
        "total_cnt": len(power_factors),
        "unqualified_cnt": unqualified_cnt,
        "first_level_cnt": first_level_cnt,
        "second_level_cnt": second_level_cnt,
        "third_level_cnt": third_level_cnt,
        "fourth_level_cnt": fourth_level_cnt,
        "fifth_level_cnt": fifth_level_cnt,
        "total_save_charge": total_save_charge,
    }


async def proxy_power_factor_list(
        cids,
        month_str,
        page_size=10,
        page_num=1,
        sort_field="company_name",
        sort_direction="asc",
        status_list=None,
):
    inline_map, inline_cid_map = await get_inline_datas_dao(cids)

    company_map = await get_cid_info(cids)
    inline_ids = list(inline_map.keys())
    power_factors = await get_power_factor_results(inline_ids, month_str)

    all_list = []
    for pf_res in power_factors:
        desc = "奖励" if pf_res["kpi_x"] >= 0.9 else "罚款"
        if status_list and desc not in status_list:
            continue
        inline_id = pf_res["inlid"]
        cid = inline_cid_map[inline_id]
        all_list.append(
            {
                "cid": cid,
                "company_name": company_map[cid]["shortname"],
                "inline_id": inline_id,
                "inline_name": inline_map[inline_id]["name"],
                "power_factor": pf_res["kpi_x"],
                "status": "奖励" if pf_res["kpi_x"] >= 0.9 else "罚款",
                "save_charge": pf_res["save_charge"] if pf_res[
                                                            "save_charge"] > 0 else 0,
            }
        )
    if sort_field in ["company_name", "power_factor", "save_charge"]:
        all_list.sort(
            key=lambda x: x[sort_field],
            reverse=True if sort_direction == "desc" else False,
        )
    return {
        "rows": all_list[page_size * (page_num - 1): page_size * page_num],
        "total": len(all_list),
    }


async def get_md_space_result(inline_ids, month_str):
    async with MysqlUtil() as conn:
        sql = (
            "select `month`, `inline_md_charge`, `inline_tc_charge`, "
            "`inline_md_predict`, `save_charge`, `kpi_x`, "
            "inlid `related_inlids` "
            "from `algo_md_space_analysis_result` "
            "inner join`algo_md_space_analysis_unit`"
            " on `algo_md_space_analysis_result`.space_analysis_id=`algo_md_space_analysis_unit`.id "
            "where inlid in %s and `month` = %s and valid=1;"
        )
        md_spaces = await conn.fetchall(sql, args=(inline_ids, month_str))
    return md_spaces


async def proxy_md_space_list(
        cids,
        month_str,
        page_size=10,
        page_num=1,
        sort_field="company_name",
        sort_direction="asc",
        status_list=None,
):
    inline_map, inline_cid_map = await get_inline_datas_dao(cids)
    company_map = await get_cid_info(cids)
    inline_ids = list(inline_map.keys())
    md_spaces = await get_md_space_result(inline_ids, month_str)

    all_list = []
    for mdp_res in md_spaces:
        md_space_kpi_x = mdp_res.get("kpi_x")
        if type(md_space_kpi_x) in [int, float]:
            desc = "有空间" if md_space_kpi_x > 0 else "无空间"
        else:
            desc = "-"
        if status_list and desc not in status_list:
            continue
        inline_id = mdp_res["related_inlids"]
        cid = inline_cid_map[inline_id]
        all_list.append(
            {
                "cid": cid,
                "company_name": company_map[cid]["shortname"],
                "inline_id": inline_id,
                "inline_name": inline_map[inline_id]["name"],
                "inline_tc": inline_map[inline_id]["inline_tc"],
                "tc_runtime": inline_map[inline_id]["tc_runtime"],
                "status": desc,
                "save_charge": mdp_res["save_charge"] if mdp_res[
                                                             "save_charge"] > 0 else 0,
            }
        )
    if sort_field in ["company_name", "save_charge"]:
        all_list.sort(
            key=lambda x: x[sort_field],
            reverse=True if sort_direction == "desc" else False,
        )
    return {
        "rows": all_list[page_size * (page_num - 1): page_size * page_num],
        "total": len(all_list),
    }


async def proxy_md_space_summary(cids, month_str, inline_map=None):
    if not inline_map:
        inline_map, inline_cid_map = await get_inline_datas_dao(cids)

    inline_ids = list(inline_map.keys())
    md_spaces = await get_md_space_result(inline_ids, month_str)

    big_space_cnt = 0
    proper_space_cnt = 0
    small_space_cnt = 0
    no_space_cnt = 0
    exits_space_cnt = 0
    total_save_charge = round(
        sum(
            [
                round(i["save_charge"], 2)
                for i in md_spaces
                if type(i["save_charge"]) in [int, float] and i[
                "save_charge"] >= 0
            ]
        ),
        2,
    )
    for mdp_res in md_spaces:
        md_space_kpi_x = mdp_res.get("kpi_x")

        if type(md_space_kpi_x) in [int, float]:
            if md_space_kpi_x <= 0:
                no_space_cnt += 1
            elif 0 < md_space_kpi_x <= 0.1:
                small_space_cnt += 1
                exits_space_cnt += 1
            elif 0.1 < md_space_kpi_x <= 0.2:
                proper_space_cnt += 1
                exits_space_cnt += 1
            else:
                big_space_cnt += 1
                exits_space_cnt += 1
        else:
            log.error(f"mdp_res={mdp_res} 无法判断需量空间")

    return {
        "total_cnt": len(md_spaces),
        "exits_space_cnt": exits_space_cnt,
        "big_space_cnt": big_space_cnt,
        "proper_space_cnt": proper_space_cnt,
        "small_space_cnt": small_space_cnt,
        "no_space_cnt": no_space_cnt,
        "total_save_charge": total_save_charge,
    }


async def get_power_save_result(inline_ids, month_str):
    async with MysqlUtil() as conn:
        sql = "select `inlid`, `cost_loss_percent`, `mean_load_factor`, " \
              "`kpi_x`, `save_charge` from `algo_economic_operation_result` " \
              "where `inlid` in %s and `month` = %s"
        power_save_res_list = await conn.fetchall(sql,
                                                  args=(inline_ids, month_str))
    return power_save_res_list


async def proxy_power_save_list(
        cids, month_str, page_size=10, page_num=1, sort_field="company_name",
        sort_direction="asc",
):
    async with MysqlUtil() as conn:
        inline_sql = f"select `inlid`, `name`,cid cid, " \
                     f"`inline_tc`, `tc_runtime` from `inline` " \
                     f"where cid in %s order by cid"
        inlines = await conn.fetchall(inline_sql, args=(cids,)) if cids else []
        inline_map = {i["inlid"]: i for i in inlines}
        inline_cid_map = {i["inlid"]: i["cid"] for i in inlines}

    company_map = await get_cid_info(cids)

    inline_ids = list(inline_map.keys())
    power_save_res_list = await get_power_save_result(inline_ids, month_str)

    all_list = []
    for power_save_res in power_save_res_list:
        inline_id = power_save_res["inlid"]
        cid = inline_cid_map[inline_id]
        all_list.append(
            {
                "cid": cid,
                "company_name": company_map[cid]["shortname"],
                "inline_id": inline_id,
                "inline_name": inline_map[inline_id]["name"],
                "inline_tc": inline_map[inline_id]["inline_tc"],
                "tc_runtime": inline_map[inline_id]["tc_runtime"],
                "avg_load_rate": power_save_res["mean_load_factor"],
                "cos_loss_rate": power_save_res["cost_loss_percent"],
                "save_charge": power_save_res["save_charge"]
                if power_save_res["save_charge"] > 0
                else 0,
            }
        )
    if sort_field in ["company_name", "avg_load_rate", "save_charge"]:
        all_list.sort(
            key=lambda x: x[sort_field],
            reverse=True if sort_direction == "desc" else False,
        )
    return {
        "rows": all_list[page_size * (page_num - 1): page_size * page_num],
        "total": len(all_list),
    }


async def proxy_power_save_summary(
        cids, month_str, inline_map=None,
):
    if not inline_map:
        # 为了代码复用,减少数据库查询,如果外部传了进线信息,那么没必要再查询了
        async with MysqlUtil() as conn:
            inline_sql = f"select `inlid`, `name`, cid `cid`, " \
                         f"`inline_tc`, `tc_runtime` from `inline` " \
                         f"where cid in %s order by cid"
            inlines = await conn.fetchall(inline_sql,
                                          args=(cids,)) if cids else []
            inline_map = {i["inlid"]: i for i in inlines}

    inline_ids = list(inline_map.keys())
    power_save_res_list = await get_power_save_result(inline_ids, month_str)

    big_space_cnt = 0
    proper_space_cnt = 0
    small_space_cnt = 0
    no_space_cnt = 0
    exits_space_cnt = 0
    total_save_charge = round(
        sum(
            [
                round(i["save_charge"], 2)
                for i in power_save_res_list
                if type(i["save_charge"]) in [int, float] and i[
                "save_charge"] >= 0
            ]
        ),
        2,
    )
    for power_save_res in power_save_res_list:
        kpi_x = power_save_res.get("kpi_x")
        if type(kpi_x) in [int, float]:
            if kpi_x <= 0.6:
                no_space_cnt += 1
            elif kpi_x > 0.6 and kpi_x <= 0.7:
                small_space_cnt += 1
                exits_space_cnt += 1
            elif kpi_x > 0.7 and kpi_x <= 0.8:
                proper_space_cnt += 1
                exits_space_cnt += 1
            else:
                big_space_cnt += 1
                exits_space_cnt += 1
        else:
            log.error(
                f"power_save_res = {power_save_res} kpi_x={kpi_x}无法评价经济运行空间")

    return {
        "total_cnt": len(power_save_res_list),
        "exits_space_cnt": exits_space_cnt,
        "big_space_cnt": big_space_cnt,
        "proper_space_cnt": proper_space_cnt,
        "small_space_cnt": small_space_cnt,
        "no_space_cnt": no_space_cnt,
        "total_save_charge": total_save_charge,
    }


async def get_pcvf_result(inline_ids, month_str):
    async with MysqlUtil() as conn:
        sql = "select `inlid`, `score`, `cost_save` from `algo_plsi_result` " \
              "where `inlid` in %s and `month` = %s"
        power_pcvfs = await conn.fetchall(sql, args=(inline_ids, month_str))
    return power_pcvfs


async def proxy_pcvf_list(
        cids, month_str, page_size=10, page_num=1, sort_field="company_name",
        sort_direction="asc",
):
    """
    移峰填谷指数
    :param cids:
    :param month_str:
    :param page_size:
    :param page_num:
    :param sort_field:
    :param sort_direction:
    :return:
    """
    inline_map, inline_cid_map = await get_inline_datas_dao(cids)

    company_map = await get_cid_info(cids)

    inline_ids = list(inline_map.keys())
    power_pcvfs = await get_pcvf_result(inline_ids, month_str)

    all_list = []
    for power_pcvf in power_pcvfs:
        inline_id = power_pcvf["inlid"]
        cid = inline_cid_map[inline_id]
        all_list.append(
            {
                "cid": cid,
                "company_name": company_map[cid]["shortname"],
                "inline_id": inline_id,
                "inline_name": inline_map[inline_id]["name"],
                "pcvf_index": power_pcvf["score"],
                "save_charge": power_pcvf["cost_save"] if power_pcvf[
                                                              "cost_save"] > 0 else 0,
            }
        )

    all_inline_ids = [i["inline_id"] for i in all_list]
    if not all_inline_ids:
        return {"rows": [], "total": 0}
    # power_info_map = await inline_power_use_info(all_inline_ids, month_str)
    power_info_map = await inline_power_use_info(all_inline_ids, month_str)
    for i in all_list:
        power = 0
        charge = 0
        avg_price = 0
        inline_id = i["inline_id"]
        if inline_id in power_info_map:
            charge = round(power_info_map[inline_id]["charge"], 2)
            power = round(power_info_map[inline_id]["kwh"], 2)
            avg_price = round(charge / power, 2) if power else 0
        i["avg_price"] = avg_price
        i["power"] = power
        i["charge"] = charge

    if sort_field in ["company_name", "avg_price", "pcvf_index",
                      "save_charge"]:
        all_list.sort(
            key=lambda x: x[sort_field],
            reverse=True if sort_direction == "desc" else False,
        )
    page_rows = all_list[page_size * (page_num - 1): page_size * page_num]
    return {
        "rows": page_rows,
        "total": len(all_list),
    }


async def proxy_pcvf_summary(
        cids, month_str, inline_map=None,
):
    if not inline_map:
        inline_map, inline_cid_map = await get_inline_datas_dao(cids)
    inline_ids = list(inline_map.keys())
    power_pcvf_res_list = await get_pcvf_result(inline_ids, month_str)

    total_save_charge = round(
        sum(
            [
                round(i["cost_save"], 2)
                for i in power_pcvf_res_list
                if type(i["cost_save"]) in [int, float] and i["cost_save"] >= 0
            ]
        ),
        2,
    )
    big_space_cnt = 0
    proper_space_cnt = 0
    small_space_cnt = 0
    no_space_cnt = 0
    exits_space_cnt = 0
    for power_pcvf_res in power_pcvf_res_list:
        score = power_pcvf_res.get("score")
        if type(score) in [int, float]:
            if score >= 90:
                no_space_cnt += 1
            elif 80 < score < 90:
                small_space_cnt += 1
                exits_space_cnt += 1
            elif 70 < score <= 80:
                proper_space_cnt += 1
                exits_space_cnt += 1
            else:
                big_space_cnt += 1
                exits_space_cnt += 1
        else:
            log.error(
                f"power_save_res = {power_pcvf_res}  score={score}无法评价移峰填谷空间")

    return {
        "total_cnt": len(power_pcvf_res_list),
        "exits_space_cnt": exits_space_cnt,
        "big_space_cnt": big_space_cnt,
        "proper_space_cnt": proper_space_cnt,
        "small_space_cnt": small_space_cnt,
        "no_space_cnt": no_space_cnt,
        "total_save_charge": total_save_charge,
    }


async def proxy_electric_optimization_summary(cids, month_str):
    inline_sql = f"select inlid,name,cid cid,inline_tc,tc_runtime" \
                 f" from inline where `cid` in %s order by cid"
    async with MysqlUtil() as conn:
        inlines = await conn.fetchall(inline_sql, args=(cids,)) if cids else []
        inline_map = {i["inlid"]: i for i in inlines}

    inline_ids = list(inline_map.keys())
    power_factor_summary_map = await proxy_power_factor_summary(
        inline_ids, month_str, inline_map=inline_map
    )
    md_space_summary_map = await proxy_md_space_summary(
        inline_ids, month_str, inline_map=inline_map
    )
    power_save_summary_map = await proxy_power_save_summary(
        inline_ids, month_str, inline_map=inline_map
    )
    power_pcvf_summary_map = await proxy_pcvf_summary(inline_ids, month_str,
                                                      inline_map=inline_map)

    return {
        "power_factor": {
            "can_optimiz_cnt": power_factor_summary_map["unqualified_cnt"],
            "save_charge": power_factor_summary_map["total_save_charge"],
        },
        "md_space": {
            "can_optimiz_cnt": md_space_summary_map["exits_space_cnt"],
            "save_charge": md_space_summary_map["total_save_charge"],
        },
        "pcvf": {
            "can_optimiz_cnt": power_pcvf_summary_map["exits_space_cnt"],
            "save_charge": power_pcvf_summary_map["total_save_charge"],
        },
        "power_save": {
            "can_optimiz_cnt": power_save_summary_map["exits_space_cnt"],
            "save_charge": power_save_summary_map["total_save_charge"],
        },
    }