pv_evaluate_tool.py 10 KB
Newer Older
lcn's avatar
lcn committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
# -*- coding: utf-8 -*-

import pandas as pd
import numpy as np
import copy
import numpy_financial as npf


class PvEvaluateTool(object):
    """光伏测算工具"""
    """
    pv_system={
            "user_type": "工商业", #建筑类型
            "install_space":1200,       #屋顶面积m2
            "area_conversion_ratio":0.7, # #面积折算系数
            "capacity_per_meter": 100, # 单位面积容量
            "self_use_ratio":1.0, #自发自用比例
            "efficiency":0.8,         # 发电效率
            "evaluate_year": 25,  #评估年限
            "first_3year_decay_rate":0.015, #前3年衰减率
            "other_year_decay_rate":0.008, #4-25年衰减率
            "annual_sunshine_hours": 1347.945 #年有效日照小时数
            }

    price={
        "rmb_per_wp":7.5,       #建设单价
        "maintenance_per_wp":0.05, # 运维单价
        "coal_in_grid": 0.43, #脱硫电价        
        "self_use_price_discout":1.0, #自发自用电价折扣
        "spfv_price": 0.6  #测算时段平均电价                            
        }

    total_capacity = 315
    df_load负荷曲线
    df_pv负荷曲线
    """

    def __init__(self, pv_system, price, total_capacity, df_load, df_pv):
        self.pv_system = pv_system
        self.price = price
        self.total_capacity = total_capacity
        self.invest_capacity = self.cal_install_capacity()
        self.invest_charge = self.cal_invest_charge()
        self.maintenance_year_charge = self.cal_maintenance_year_charge()
        self.first_year_kwh = self.cal_first_year_kwh()
        self.curve = self._merge_curve(df_load, df_pv)
        self.evaluate_table = None

        self.static_period = 0
        self.dynamic_period = 0
        self.irr = 0
        self.msg = ''

    def _merge_curve(self, df_load, df_pv):
        pv_kWp = self.invest_capacity / 1000
        df_load1 = copy.deepcopy(df_load)
        df_pv1 = copy.deepcopy(df_pv)
        df_pv1["pv_curve"] = df_pv1["pv_curve"]/1000 * pv_kWp * self.pv_system[
            "efficiency"]
        rst = pd.merge(df_load1[["quarter_time", "load_curve"]],
                       df_pv1[["quarter_time", "pv_curve"]], how="left",
                       on="quarter_time")
        return rst

    def cal_install_capacity(self):
        rst = self.pv_system["install_space"] * self.pv_system[
            "area_conversion_ratio"] * self.pv_system["capacity_per_meter"]
        if rst > self.total_capacity*1000:
            rst = self.total_capacity*1000

        return rst

    def cal_maintenance_year_charge(self):
        rst = self.invest_capacity * self.price["maintenance_per_wp"]
        return rst

    def cal_invest_charge(self):
        rst = self.invest_capacity * self.price["rmb_per_wp"]
        return rst

    def cal_first_year_kwh(self):
        rst = self.invest_capacity * self.pv_system[
            "annual_sunshine_hours"] / 1000
        return rst

    def cal_self_use_benefit(self, kwh):
        rst = self.price["spfv_price"] * self.price[
            "self_use_price_discout"] * kwh * self.pv_system["self_use_ratio"]
        return rst

    def cal_on_grid_benefit(self, kwh):
        rst = self.price["coal_in_grid"] * kwh * (
                    1 - self.pv_system["self_use_ratio"])
        return rst

    def cal_total_benefit(self, kwh):
        rst = self.cal_self_use_benefit(kwh) + self.cal_on_grid_benefit(kwh)
        return rst

    def cal_evaluate_table(self):
        table_title = ["年份", "年衰减率", "剩余容量", "年发电量",
                       "维护成本", "累计总成本", "本年收益", "累计收益"]
        decay_rate = ([0] + [self.pv_system["first_3year_decay_rate"]] * 3
                      + [self.pv_system["other_year_decay_rate"]] * (
                                  self.pv_system["evaluate_year"] - 4))
        bank_interest = [1 / (1 + self.price["bank_interest"])] * \
                        self.pv_system["evaluate_year"]
        charge_output = [- self.invest_charge] + [0] * (
                    self.pv_system["evaluate_year"] - 1)
        data = pd.DataFrame(
            {"年份": range(1, self.pv_system["evaluate_year"] + 1),
             "年衰减率": decay_rate,
             "支出": charge_output, "折现率": bank_interest},
            columns=["年份", "年衰减率", "支出", "折现率"])
        data["剩余容量"] = 1 - data["年衰减率"]
        data["剩余容量"] = data["剩余容量"].cumprod()
        data["折现率"] = data["折现率"].cumprod()
        data["年发电量"] = data["剩余容量"] * self.first_year_kwh
        data["维护成本"] = -self.maintenance_year_charge
        data["累计总成本"] = (data["维护成本"] + data["支出"]).cumsum()
        data["本年收益"] = self.cal_total_benefit(data["年发电量"]) + data["维护成本"]
        data["本年折现收益"] = data["本年收益"] * data["折现率"]
        data["累计收益"] = (data["本年收益"] + data["支出"]).cumsum()
        data["折现累计收益"] = (data["本年折现收益"] + data["支出"]).cumsum()

        static_temp = data["累计收益"][data["累计收益"] > 0]
        if len(static_temp) > 0:
            static_index = list(static_temp.index)[0]
            static_index = static_index - 1 if static_index > 0 else 0
            self.static_period = data.loc[static_index, "年份"] - data.loc[
                static_index, "累计收益"] / (data.loc[
                                             static_index + 1, "本年收益"] + 0.001)
        else:
            self.static_period = -1

        dynamic_temp = data["折现累计收益"][data["折现累计收益"] > 0]
        if len(dynamic_temp) > 0:
            dynamic_index = list(dynamic_temp.index)[0]
            dynamic_index = dynamic_index - 1 if dynamic_index > 0 else 0
            self.dynamic_period = data.loc[dynamic_index, "年份"] - data.loc[
                dynamic_index, "折现累计收益"] / (data.loc[
                                                dynamic_index + 1, "本年折现收益"] + 0.001)
        else:
            self.dynamic_period = -1

        self.irr = npf.irr([- self.invest_charge] + list(data["本年收益"].values))
        return data[table_title]

    @staticmethod
    def fix_decimal_points(v, decimal_num=4):
        """ 将浮点型的值固定小数位, 默认保留4位小数位
        :param v: 浮点型的值
        """
        rlt = v
        fmt = "%.df"
        fmt = fmt.replace('d', str(decimal_num))
        if isinstance(v, float):
            s = fmt % v
            rlt = float(s)
        return rlt

    def output(self):
        self.input_param_process()
        data = self.cal_evaluate_table()
        for key in data.columns:
            data[key] = data[key].apply(lambda x: self.fix_decimal_points(x))
        for key in ["load_curve", "pv_curve"]:
            self.curve[key] = self.curve[key].apply(
                lambda x: self.fix_decimal_points(x))
        self.evaluate_table = data

    def input_param_process(self):
        if self.pv_system["area_conversion_ratio"] <= 0:
            self.pv_system["area_conversion_ratio"] = 0.0
        elif self.pv_system["area_conversion_ratio"] >= 1:
            self.pv_system["area_conversion_ratio"] = 1

        if self.pv_system["efficiency"] <= 0:
            self.pv_system["efficiency"] = 0.0
        elif self.pv_system["efficiency"] >= 1:
            self.pv_system["efficiency"] = 1

        if self.pv_system["self_use_ratio"] <= 0:
            self.pv_system["self_use_ratio"] = 0.0
        elif self.pv_system["self_use_ratio"] >= 1:
            self.pv_system["self_use_ratio"] = 1

        if self.pv_system["evaluate_year"] <= 10:
            self.pv_system["evaluate_year"] = 10

        if self.price["self_use_price_discout"] <= 0:
            self.price["self_use_price_discout"] = 0.0
        elif self.price["self_use_price_discout"] >= 1:
            self.price["self_use_price_discout"] = 1


if __name__ == "__main__":

    pv_system = {
        "user_type": "工商业",  # 建筑类型
        "install_space": 2000,  # 屋顶面积m2
        "area_conversion_ratio": 0.8,  # #面积折算系数
        "capacity_per_meter": 100,  # 单位面积容量
        "self_use_ratio": 1.0,  # 自发自用比例
        "efficiency": 0.8,  # 发电效率
        "evaluate_year": 25,  # 评估年限
        "first_3year_decay_rate": 0.015,  # 前3年衰减率
        "other_year_decay_rate": 0.008,  # 4-25年衰减率
        "annual_sunshine_hours": 989.04  # 年峰值日照小数数
    }

    price = {
        "rmb_per_wp": 4.3,  # 建设单价
        "maintenance_per_wp": 0.05,  # 运维单价
        "coal_in_grid": 0.45,  # 脱硫电价
        "self_use_price_discout": 1.0,  # 自发自用电价折扣
        "spfv_price": 0.48885056077566996,  # 测算时段平均电价
        "bank_interest": 0.085
    }

    total_capacity = 160  # 月
    stat_time = pd.to_datetime(
        pd.date_range("2019-01-01", "2019-01-02", freq="0.25H")[:-1])
    df_load = pd.DataFrame(
        {"quarter_time": stat_time, "load_curve": np.random.random(96)},
        columns=["quarter_time", "load_curve"])
    df_load["quarter_time"] = df_load["quarter_time"].apply(
        lambda x: x.strftime("%H:%M:%S"))

    df_pv = pd.DataFrame(
        {"quarter_time": stat_time, "pv_curve": np.random.random(96)},
        columns=["quarter_time", "pv_curve"])
    df_pv["quarter_time"] = df_pv["quarter_time"].apply(
        lambda x: x.strftime("%H:%M:%S"))
    # print(df_pv)

    obj = PvEvaluateTool(pv_system, price, total_capacity, df_load, df_pv)
    obj.output()

    """光伏测算工具"""
    print(
        "**********************************************************************************************************")
    print("输入参数")
    print()
    print(obj.invest_charge)
    print(obj. invest_charge)   # 获取总投资
    print(obj.static_period)   # 静态回收期
    print(obj.invest_capacity)  # 获取装机容量
    print(obj.first_year_kwh)   # 获取首年发电量

    print(obj.evaluate_table)  # 测算表
    print(obj.curve)  # 计算优化分析结果