pv_optimation_tool.py 25.1 KB
Newer Older
lcn's avatar
lcn committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
# -*- coding: utf-8 -*-

import pandas as pd
import numpy as np
import copy
import datetime


class PvOptimizationTool(object):
    """光伏优化工具"""
    """
                    "pv_system":{
                                "user_type": "工商业", #建筑类型
                                "install_space":10000,       #安装面积m2 
                                "efficiency":0.8,         #光伏发电效率
                                "first_year_decay_rate":2.5, #首年衰减率
                                "first10_year_decay_rate":0.8, #第2-10年衰减率
                                "other_year_decay_rate":0.7, #第11-25年衰减率
                                "evaluate_year": 25,  #评估年限
                                "self_use_ratio":0.7, #自发自用比例
                                "peak_sunshine_hours": 1347.945 #年峰值日照小数数
                                },
                    "price":{
                            "rmb_per_wp":7.5元/Wp,       #建设单价
                            "self_use_price_discout":100.0,       #自发自用电价折扣
                            "sel_use_per_kwh": 1元/kWh,   #自发自用电价
                            "state_subsidy": 0.42 元/kWh, #国家补贴 
                            "local_subsidy": 0.25 元/kWh, #地方补贴 
                            "local_subsidy_year":5, #地方补贴年限
                            "first_install_subsidy": 0.0 元/Wp, #初始安装补贴 
                            "coal_in_grid": 0.43 元/kWh, #脱硫电价
                            "spfv_price":{
                                            "section_s":{"price":0, "time_range": ""}, 
                                            "section_p":{"price":0.8888, "time_range": "14:00-17:00;19:00-22:00"},
                                            "section_f":{"price":0.5503, "time_range": "8:00-14:00;17:00-19:00;22:00-24:00"},
                                            "section_v":{"price":0.2900, "time_range":"00:00-8:00"}
                            } #分时电价及对应时段小时数                            
                            }
                    env_benifit_param = {
                            "one_family_kwh": 3600, #一户家庭一年用3600度电
                            "CO2":0.822,       #二氧化碳排放kg/kWh
                            "SO2": 0.00039,   #二氧化硫排放kg/kWh
                            "NOx": 0.00036 , #氮氧化合物kg/kWh 
                            "smoke": 0.00008 , #烟尘kg/kWh 
                            "coal": 0.312, #煤耗kg/kWh 
                            "h2o": 0.0040, #纯净水m3/kWh
                            "tree": 18.3         #=0.822/18.3相当于植树棵/kWh 1棵树1年可吸收18.3千克CO2
                        }
                    inline_var:{
                                    "inline_capacity":进线容量,kVA, 
                                    "peak_kwh":峰时段电量kwh, 
                                    "peak_charge":峰时段电费元, 
                                    "flat_kwh":平时段电量kwh, 
                                    "flat_charge":平时段电费元

                    df_load :pandas.DataFrame       column_name:["quarter_time", "load_curve"]
                    df_pv: pandas.DataFrame         column_name:["quarter_time", "pv_curve"]                          
    """

    def __init__(self, pv_system, price, env_benifit_param, df_load, df_pv,
                 inline_var):
        self.pv_system = pv_system
        self.price = price
        self.env_benifit_param = env_benifit_param
        self.curve = self._merge_curve(df_load, df_pv)
        self.inline_var = inline_var

        self.self_use_price = self._cal_mean_price()
        self.time_section = self._check_time_section()
        self.income_table = 0

        self.invest_capacity = 0
        self.invest_evaluate = 0
        self.opt_analysis = 0
        self.opt_curve = 0
        self.msg = ''

    def _merge_curve(self, df_load, df_pv):
        pv_kWp = self.pv_system["install_space"] * 100 / 1000.0
        df_load1 = copy.deepcopy(df_load)
        df_pv1 = copy.deepcopy(df_pv)
        df_load1.set_index("quarter_time", inplace=True)
        df_load1 = df_load1.resample("1H", closed="left", label="left").mean()
        df_load1.reset_index(inplace=True)
        df_load1["time_point"] = df_load1["quarter_time"].apply(
            lambda x: datetime.datetime.strftime(x, "%H:%M:%S"))
        df_pv1["time_point"] = df_pv1["quarter_time"].apply(
            lambda x: datetime.datetime.strftime(x, "%H:%M:%S"))
        df_pv1["pv_curve"] = df_pv1["pv_curve"] * pv_kWp / 1000.0 * \
                             self.pv_system["efficiency"]
        df_new = pd.merge(df_load1[["time_point", "load_curve"]],
                          df_pv1[["time_point", "pv_curve"]], how="left",
                          on="time_point")
        return df_new

    def cal_invest_capacity(self):
        rst = {}
        rst["install_space"] = self.pv_system["install_space"]
        rst["capacity"] = self.pv_system["install_space"] * 100 / 1000.0
        rst["ttl_invest"] = rst["capacity"] * (
                    self.price["rmb_per_wp"] - self.price[
                "first_install_subsidy"]) * 1000.0  # 元
        rst["first_year_ttl_kwh"] = rst["capacity"] * self.pv_system[
            "efficiency"] * self.pv_system["peak_sunshine_hours"]  # 度
        return rst

    def time_15min_parse(self, time_range):
        time_sections = time_range.split(";")
        sections = []
        for section in time_sections:
            section_range = section.split("-")
            start_time = pd.Timestamp(section_range[0])
            if section_range[1] == "24:00":
                section_range[1] = "00:00"
                stop_time = pd.Timestamp(section_range[1]) + pd.Timedelta(
                    days=1)
            else:
                stop_time = pd.Timestamp(section_range[1])
            current_time = start_time  # + pd.Timedelta(seconds=900)
            while True:
                if current_time < stop_time:
                    sections.append(current_time)
                    current_time += pd.Timedelta(seconds=900)
                else:
                    break
        return sections

    def time_1hour_parse(self):
        time_index_series = self.time_section.copy(deep=True)
        time_index_series = time_index_series.set_index("quarter_time")
        time_section_resample = time_index_series.resample("1H", closed="left",
                                                           label="left").max()  # , loffset="-1H"
        time_section_resample.reset_index(inplace=True)
        time_section_resample["time_point"] = time_section_resample[
            "quarter_time"].apply(
            lambda x: datetime.datetime.strftime(x, "%H:%M:%S"))
        df_curve = copy.deepcopy(self.curve)
        # df_curve["time_point"] = df_curve["quarter_time"].apply(lambda x:datetime.datetime.strftime(x, "%H:%M:%S"))
        df_new = pd.merge(time_section_resample[["time_point", "spfv_flag"]],
                          df_curve[["time_point", "load_curve", "pv_curve"]],
                          how="left", on="time_point")
        df_new["load_pv_curve"] = df_new["load_curve"] - df_new["pv_curve"]
        df_new.set_index("time_point", inplace=True)
        # time_section_resample = time_section_resample.reset_index()
        # df = pd.concat([time_section_resample, self.curve], axis=1, ignore_index=False)
        return df_new

    def _check_time_section(self):
        param = {"section_s": 3, "section_p": 2, "section_f": 1, "section_v": 0}
        hour = []
        spfv_flag = []
        for key in self.price["spfv_price"].keys():
            time_point = self.time_15min_parse(
                self.price["spfv_price"][key]["time_range"])
            hour.extend(time_point)
            num_15mins = len(time_point)
            spfv_flag.extend([param[key]] * num_15mins)

        time_section = pd.DataFrame(
            {"quarter_time": hour, "spfv_flag": spfv_flag})
        time_section = time_section.sort_values(by="quarter_time")
        time_section.index = range(96)
        return time_section

    def _cal_mean_price(self):
        mean_price = 0.0
        if not self.price["sel_use_per_kwh"]:
            mean_price = (self.inline_var["peak_charge"] + self.inline_var[
                "flat_charge"]) / (self.inline_var["peak_kwh"] +
                                   self.inline_var["flat_kwh"] + 0.0001)
        else:
            mean_price = self.price["sel_use_per_kwh"]

        return mean_price * self.price["self_use_price_discout"] / 10.0

    def _cal_income_table(self):

        if self.pv_system["evaluate_year"] < 20:
            evaluate_year = 20
        else:
            evaluate_year = self.pv_system["evaluate_year"]
        if self.price["local_subsidy_year"] >= evaluate_year:
            self.price["local_subsidy_year"] = evaluate_year
        decay_rate = np.array([0, self.pv_system["first_year_decay_rate"]] +
                              [self.pv_system["first10_year_decay_rate"]] * 9 +
                              [self.pv_system["other_year_decay_rate"]] * (
                                          evaluate_year - 10 - 1)) / 100.0
        end_year_percent = 1 - decay_rate.cumsum()

        year_gen_kwh = self.invest_capacity[
                           "first_year_ttl_kwh"] * end_year_percent
        state_subsidy = np.array(
            [self.price["state_subsidy"]] * 20 + [0] * (evaluate_year - 20))
        local_subsidy = np.array(
            [self.price["local_subsidy"]] * self.price["local_subsidy_year"] + [
                0] * (evaluate_year - self.price["local_subsidy_year"]))
        self_use_price = np.array([
                                      self.self_use_price] * evaluate_year + state_subsidy + local_subsidy)
        in_grid_price = np.array([self.price[
                                      "coal_in_grid"]] * evaluate_year + state_subsidy + local_subsidy)
        income_table = pd.DataFrame(
            {
                "year": range(1, evaluate_year + 1),
                "decay_rate": decay_rate,
                "end_year_percent": end_year_percent,
                "year_gen_kwh": year_gen_kwh,
                "self_use_price": self_use_price,
                "in_grid_price": in_grid_price
            }
        )

        income_table["year_benifit"] = (
                    income_table["year_gen_kwh"] * self.pv_system[
                "self_use_ratio"] * income_table["self_use_price"] +
                    income_table["year_gen_kwh"] * (
                                1.0 - self.pv_system["self_use_ratio"]) *
                    income_table["in_grid_price"])
        income_table["cumsum_benifit"] = income_table["year_benifit"].cumsum() - \
                                         self.invest_capacity["ttl_invest"]
        income_table["year_benifit_ratio"] = income_table["year_benifit"] / (
                    self.invest_capacity["ttl_invest"] + 0.001)
        income_table = income_table.set_index("year")
        n_years = (income_table["cumsum_benifit"] < 0).sum()
        if n_years < 1:
            self.invest_cycle = 0
        elif n_years >= len(income_table["cumsum_benifit"]):
            self.invest_cycle = evaluate_year
        else:
            self.invest_cycle = n_years - income_table["cumsum_benifit"][
                n_years] / (income_table["year_benifit"][n_years + 1] + 0.0001)

        return income_table

    def cal_invest_evaluate(self):
        rst = {}
        rst["invest_income"] = self._cal_invest_income()
        rst["env_benifit_per_year"] = self._cal_env_benifit()
        return rst

    def _cal_invest_income(self):
        rst = {}
        self.income_table = self._cal_income_table()
        rst["first_year_income"] = self.income_table["year_benifit"][1]
        rst["first_year_income_rate"] = self.income_table["year_benifit_ratio"][
            1]
        rst["first_year_month_income"] = rst["first_year_income"] / 12.0
        rst["invest_income_year"] = self.invest_cycle
        return rst

    def _cal_env_benifit(self):
        env_benifit = {}
        for key in self.env_benifit_param.keys():
            if key == "tree":
                env_benifit[key] = self.invest_capacity["first_year_ttl_kwh"] * \
                                   self.env_benifit_param["CO2"] / (
                                               self.env_benifit_param[
                                                   key] + 0.001)
            elif key == "one_family_kwh":
                env_benifit[key] = self.invest_capacity[
                                       "first_year_ttl_kwh"] / (
                                               self.env_benifit_param[
                                                   key] + 0.00001)
            else:
                env_benifit[key] = self.invest_capacity["first_year_ttl_kwh"] * \
                                   self.env_benifit_param[key]
        return env_benifit

    def cal_opt_analysis(self):
        rst = {}
        rst["peak_clip"] = self._peak_clip()
        rst["max_demand"] = self._max_demand_control()
        rst["economic_operation"] = self._economic_operation()
        return rst

    def _peak_clip(self):
        rst = {}
        df = self.time_1hour_parse()
        pv_not_null = df[df["pv_curve"] > 0]
        pv_peak = pv_not_null[pv_not_null["spfv_flag"] >= 2]

        if pv_peak["pv_curve"].sum() > 0:
            peak_clip_flag = True
            peak_clip_kwh = pv_peak["pv_curve"].sum() * 30
        else:
            peak_clip_flag = False
            peak_clip_kwh = 0.0
        rst["peak_clip_flag"] = peak_clip_flag
        rst["peak_clip_kwh"] = self.fix_decimal_points(peak_clip_kwh,
                                                       decimal_num=2)

        opt_curve = df[["load_curve", "pv_curve", "load_pv_curve"]]
        opt_curve.index.name = "quarter_time"
        self.opt_curve = opt_curve
        return rst

    def _max_demand_control(self):
        rst = {}
        old_max_demand = self.opt_curve["load_curve"].max()
        new_max_demand = self.opt_curve["load_pv_curve"].max()
        old_new = old_max_demand - new_max_demand
        try:
            if self.inline_var["inline_capacity"]:
                percent_flag = (old_new / self.inline_var[
                    "inline_capacity"] >= 0.01)
            else:
                percent_flag = (old_new >= 10)

            if percent_flag:
                max_demand_flag = True
                max_demand_benifit = old_new * self.price["max_demand"]
            else:
                max_demand_flag = False
                max_demand_benifit = 0.0
        except Exception as e:
            max_demand_flag = False
            max_demand_benifit = 0.0
        rst["max_demand_flag"] = max_demand_flag
        rst["max_demand_benifit"] = self.fix_decimal_points(max_demand_benifit,
                                                            decimal_num=2)
        return rst

    def _economic_operation(self):
        rst = {}
        old_max_load = self.opt_curve["load_curve"].max()
        new_max_load = self.opt_curve["load_pv_curve"].max()
        old_new = old_max_load - new_max_load
        try:
            if self.inline_var["inline_capacity"]:
                percent_flag = (old_new / self.inline_var[
                    "inline_capacity"] >= 0.01)
            else:
                percent_flag = (old_new >= 10)

            if percent_flag:
                economic_flag = True
                reduce_peak = old_new
                reduce_load_factor = new_max_load / (
                            self.inline_var["inline_capacity"] + 0.001)
            else:
                economic_flag = False
                reduce_peak = 0.0
                reduce_load_factor = 0.0
        except Exception as e:
            economic_flag = False
            reduce_peak = 0.0
            reduce_load_factor = 0.0
        rst["economic_operation_flag"] = economic_flag
        rst["reduce_peak"] = self.fix_decimal_points(reduce_peak, decimal_num=2)
        rst["reduce_load_factor"] = self.fix_decimal_points(reduce_load_factor,
                                                            decimal_num=4)

        return rst

    @staticmethod
    def fix_decimal_points(v, decimal_num=4):
        """ 将浮点型的值固定小数位, 默认保留4位小数位
        :param v: 浮点型的值
        """
        rlt = v
        fmt = "%.df"
        fmt = fmt.replace('d', str(decimal_num))
        if isinstance(v, float):
            s = fmt % v
            rlt = float(s)
        return rlt

    def fix_output_point(self):
        for key in self.invest_capacity.keys():
            self.invest_capacity[key] = self.fix_decimal_points(
                self.invest_capacity[key], decimal_num=2)

        for key_top in self.invest_evaluate.keys():
            for key in self.invest_evaluate[key_top].keys():
                self.invest_evaluate[key_top][key] = self.fix_decimal_points(
                    self.invest_evaluate[key_top][key], decimal_num=2)

    def output(self):
        self.input_param_process()
        self.invest_capacity = self.cal_invest_capacity()
        self.invest_evaluate = self.cal_invest_evaluate()
        self.opt_analysis = self.cal_opt_analysis()
        self.fix_output_point()

    def input_param_process(self):
        if self.pv_system["efficiency"] <= 0:
            self.pv_system["efficiency"] = 0.1
        elif self.pv_system["efficiency"] >= 1:
            self.pv_system["efficiency"] = 1

        if self.pv_system["self_use_ratio"] <= 0:
            self.pv_system["self_use_ratio"] = 0.0
        elif self.pv_system["self_use_ratio"] >= 1:
            self.pv_system["self_use_ratio"] = 1

        if self.price["self_use_price_discout"] <= 0:
            self.price["self_use_price_discout"] = 0.0
        elif self.price["self_use_price_discout"] >= 10:
            self.price["self_use_price_discout"] = 10


if __name__ == "__main__":

    pv_system = {
        "user_type": "工商业",  # 建筑类型
        "install_space": 1200,  # 装机容量m2
        "efficiency": 0.8,  # 光伏发电效率
        "first_year_decay_rate": 2.5,  # 首年衰减率
        "first10_year_decay_rate": 0.8,  # 2-10年衰减率
        "other_year_decay_rate": 0.7,  # 11-25年衰减率
        "evaluate_year": 25,  # 评估年限
        "self_use_ratio": 0.7,  # 自发自用比例
        "peak_sunshine_hours": 1347.945  # 年峰值日照小数数
    }

    price = {
        "rmb_per_wp": 7.5,  # 建设单价
        "self_use_price_discout": 10.0,  # 自发自用电价折扣
        "sel_use_per_kwh": None,  # 自发自用电价
        # "state_subsidy": 0.42,  # 国家补贴
        "state_subsidy": 0.0,  # 国家补贴
        "local_subsidy": 0.25,  # 地方补贴
        "local_subsidy_year": 5,  # 地方补贴年限
        "first_install_subsidy": 0.0,  # 初始安装补贴
        "coal_in_grid": 0.43,  # 脱硫电价
        "max_demand": 32.0,
        "spfv_price": {
            "section_p": {"price": 0.8888,
                          "time_range": "14:00-17:00;19:00-22:00"},
            "section_f": {"price": 0.5503,
                          "time_range": "8:00-14:00;17:00-19:00;22:00-24:00"},
            "section_v": {"price": 0.2900, "time_range": "00:00-8:00"}
        }  # 分时电价及对应时段小时数
    }
    # 节能减排环境效益
    env_benifit_param = {
        "one_family_kwh": 3600,  # kwh on year
        "CO2": 0.822,  # 二氧化碳排放kg/kWh
        "SO2": 0.00039,  # 二氧化硫排放kg/kWh
        "NOx": 0.00036,  # 氮氧化合物kg/kWh
        "Smoke": 0.00008,  # 烟尘kg/kWh
        "Coal": 0.312,  # 煤耗kg/kWh
        "H2O": 0.0040,  # 纯净水m3/kWh
        "tree": 18.3  # =0.822/18.3相当于植树棵/kWh 1棵树1年可吸收18.3千克CO2
    }
    env_benifit_param = {
        "one_family_kwh": 3600,  # kwh on year
        "CO2": 0.822,  # 二氧化碳排放kg/kWh
        "SO2": 0.00039,  # 二氧化硫排放kg/kWh
        "NOx": 0.00036,  # 氮氧化合物kg/kWh
        "Smoke": 0.00008,  # 烟尘kg/kWh
        "Coal": 0.307,  # 煤耗kg/kWh
        "H2O": 0.0040,  # 纯净水m3/kWh
        "tree": 18.3  # =0.822/18.3相当于植树棵/kWh 1棵树1年可吸收18.3千克CO2
    }
    inline_var = {
        "inline_capacity": 315,
        "peak_kwh": 71.724 * 10000,
        "peak_charge": 71.724 * 10000 * 0.8888,
        "flat_kwh": 92.302 * 10000,
        "flat_charge": 92.302 * 10000 * 0.5503
    }  # 月
    stat_time = pd.date_range("2019-01-01", "2019-01-02", freq="1H")[:-1]
    stat_time1 = pd.date_range("2019-01-01", "2019-01-02", freq="0.25H")[:-1]
    # 光伏小时出力曲线
    pv_curve = pd.Series(
        [0.00, 0.00, 0.00, 0.00, 0.00, 0.83, 7.24, 18.94, 31.94, 43.13, 63.16,
         68.65, 80.03, 76.91, 70.50, 53.72, 34.43, 16.74, 5.01, 0.00, 0.00,
         0.00, 0.00, 0.00], index=range(24))
    pv_curve = pd.Series(
        [0, 0, 0, 0, 0, 7.526, 47.126, 126.118, 242.868, 360.416, 457.112,
         502.836, 513.488, 486.449, 405.981, 297.523, 175.011, 76.375, 21.156,
         0.781, 0, 0, 0, 0], index=range(24))
    # 负荷小时出力曲线
    load_curve = pd.Series(
        [3.03, 3.04, 3.03, 3.03, 3.03, 3.03, 3.18, 74.07, 89.27, 145.34, 141.61,
         141.78, 143.44, 147.09, 156.70, 129.52, 127.47, 128.37, 95.19, 47.12,
         46.36, 45.73, 44.61, 8.64], index=range(24))
    load_curve = 0.03 * pd.Series(
        [2000.0] * 24 + [2050.0, 2100.0, 2150.0, 2200.0] + [2650.0, 3100.0,
                                                            3550.0, 4000.0] + [
            4500.0, 5200.0, 6000.0] + [6800.0, 7900.0, 8600.0, 8800.0] + [
            9200.0, 8500.0, 7700.0, 7200.0] +
        [7000.0, 6900.0, 6800.0, 6700.0] + list(
            np.arange(6500.0, 7501.0, 125.0)) + list(
            np.arange(7500.0, 7001.0, -62.5)) + list(
            np.arange(7000.0, 4001.0, -375.0)) + list(
            np.arange(4000.0, 2001.0, -83.3)))
    df_load = {}
    df_pv = {}
    df_load["quarter_time"] = stat_time1
    df_load["load_curve"] = load_curve
    df_pv["quarter_time"] = stat_time
    df_pv["pv_curve"] = pv_curve
    df_load = pd.DataFrame(df_load)
    df_pv = pd.DataFrame(df_pv)
    # df_curve["load_pv_curve"] = df_curve["load_curve"] - df_curve["pv_curve"]

    obj = PvOptimizationTool(pv_system, price, env_benifit_param, df_load,
                             df_pv, inline_var)
    obj.output()
    try:
        import matplotlib.pyplot as plt

        obj.opt_curve.plot()
        plt.show()
    except Exception:
        pass

    print(
        "**********************************************************************************************************")
    print("输入参数")
    print()
    print(
        "**********************************************************************************************************")
    print("接入规模")
    print(
        "总装机容量:{capacity}kWp 安装面积:{install_space}m2 总投资:{ttl_invest}元 首年发电量:{first_year_ttl_kwh}kwh".format(
            **obj.invest_capacity))
    print(
        "**********************************************************************************************************")
    print("投资与测算")
    print("建筑类型:{user_type}".format(**obj.pv_system))
    print("投资成本:%0.2f元 = %0.2f kWp装机容量 x %0.2f元每瓦成本" % (
    obj.invest_capacity["ttl_invest"], obj.invest_capacity["capacity"],
    (obj.price["rmb_per_wp"] - obj.price["first_install_subsidy"])))
    print("安装面积:{install_space}m2".format(**obj.pv_system))
    print("辐照参数:{peak_sunshine_hours}kWh/kWp/年".format(**obj.pv_system))
    print("首年发电量:{first_year_ttl_kwh}度".format(**obj.invest_capacity))
    print("国家补贴:{state_subsidy}元/度".format(**obj.price))
    print("地方补贴:{local_subsidy}元/度".format(**obj.price))
    print("自发自用电价折扣{self_use_price_discout}折".format(**obj.price))
    print(
        "投资与收益\n建筑类型:工商业\n首年月平均收益:{first_year_month_income}元\n首年总收益:{first_year_income}元\n首年收益率:{first_year_income_rate}\n回本年限:{invest_income_year}\n".format(
            **obj.invest_evaluate["invest_income"]))
    print(
        "**********************************************************************************************************")
    print(
        "碳足迹/年\n提供电力:{one_family_kwh}户\n相当植树:{tree}棵\n节省燃煤:{Coal}kg\n减少CO2:{CO2}kg\n减少SO2:{SO2}kg\n减节省水:{H2O}m3\n".format(
            **obj.invest_evaluate["env_benifit_per_year"]))
    print(
        "**********************************************************************************************************")
    print("优化分析")
    print("经济运行 存在空间,可降低峰荷{reduce_peak}kW,最高负载率降低为{reduce_load_factor:}".format(
        **obj.opt_analysis["economic_operation"]))
    print("需量控制 存在空间,可降低用电成本{max_demand_benifit}元/月".format(
        **obj.opt_analysis["max_demand"]))
    print("移峰填谷 可减少峰段电网用电量{peak_clip_kwh}度/月,消纳光伏用电费用需根据用户与光伏电站协商电价确定".format(
        **obj.opt_analysis["peak_clip"]))
    print(obj.opt_curve)