import pendulum
from datetime import datetime, date
from unify_api.modules.electric_optimization.dao.power_index import \
    tc_by_inline_id, price_policy_by_cid, pids_by_cid, get_economic_operations
from unify_api.modules.electric_optimization.components.optimization_cps import (
    PowerSaveResp, PeakCutValleyFillResp, MdSpaceResp, PowerFactorResp,
)
from unify_api.modules.electric_optimization.procedures.optimization_pds import (
    month_md_space
)
from unify_api.modules.electric_optimization.procedures.optimization_pds import (
    month_power_pcvf, month_power_factors, month_power_loadrate,
    load_inline_power
)
from unify_api.constants import ADD_ELE_PRICE
from unify_api.modules.elec_charge.dao.elec_charge_dao import (
    point_kwh_charge
)


# 需量管理
async def md_space_service(inline_id):
    dt = pendulum.now(tz="Asia/Shanghai")
    this_month_start_dt = pendulum.date(year=dt.year, month=dt.month, day=1)
    latest_12_months = [this_month_start_dt.subtract(months=i) for i in
                        range(1, 13)]
    latest_12_months.sort()

    monthstr_list = [str(date(i.year, i.month, day=1))[:10] for i in
                     latest_12_months]
    md_space_map = await month_md_space(inline_id, monthstr_list)
    inline = await tc_by_inline_id(inline_id)
    price_policy = await price_policy_by_cid(inline["cid"])

    last_month = monthstr_list[-1]
    return MdSpaceResp(
        time_slots=[f"{str(i.year)[2:]}年{i.month}月" for i in latest_12_months],
        md_charge_values=[
            round(md_space_map.get(i, {}).get("inline_md_charge"), 2)
            if type(md_space_map.get(i, {}).get("inline_md_charge")) in [int,
                                                                         float]
            else ""
            for i in monthstr_list
        ],
        tc_charge_values=[
            round(md_space_map.get(i, {}).get("inline_tc_charge"), 2)
            if type(md_space_map.get(i, {}).get("inline_md_charge")) in [int,
                                                                         float]
            else ""
            for i in monthstr_list
        ],
        inline_md_predict=round(
            md_space_map.get(last_month, {}).get("inline_md_predict"), 2)
        if type(md_space_map.get(last_month, {}).get("inline_md_predict")) in [
            int, float]
        else "",
        tc_runtime=inline["tc_runtime"] if inline else "",
        price_md=price_policy["price_md"] if price_policy else "",
        price_tc=price_policy["price_tc"] if price_policy else "",
    )


# 功率因素
async def power_factor_service(inline_id):
    dt = pendulum.now(tz="Asia/Shanghai")
    this_month_start_dt = pendulum.date(year=dt.year, month=dt.month, day=1)
    latest_12_months = [this_month_start_dt.subtract(months=i) for i in
                        range(1, 13)]
    latest_12_months.sort()

    latest_12_months = [date(i.year, i.month, i.day) for i in latest_12_months]
    power_factors_map = await month_power_factors(inline_id, latest_12_months)

    last_month = latest_12_months[-1]
    save_charge = power_factors_map.get(last_month, {}).get("save_charge")
    last_month_pf = (
        power_factors_map.get(last_month, {}).get("cos")
        if power_factors_map.get(last_month, {}).get("cos")
        else ""
    )
    save_charge = save_charge if isinstance(save_charge, (int, float)) else ""
    if last_month_pf != "" and last_month_pf > 0.9:
        # 功率因数大于0.9不返回save_charge
        save_charge = None
    inline = await tc_by_inline_id(inline_id)
    point_list = await pids_by_cid(inline.get("cid"))
    charge_res = await point_kwh_charge(point_list)
    # total_charge = charge_res["aggregations"]["charge"]["value"]
    total_charge = charge_res.get("charge") or 0
    if last_month_pf and 0.9 > last_month_pf >= 0:
        punish_money = total_charge * ADD_ELE_PRICE[last_month_pf] / 100
    else:
        punish_money = 0.0
    return PowerFactorResp(
        time_slots=[f"{str(i.year)[2:]}年{i.month}月" for i in latest_12_months],
        power_factor_values=[
            power_factors_map.get(i, {}).get("cos")
            if power_factors_map.get(i, {}).get("cos")
            else ""
            for i in latest_12_months
        ],
        power_factor=last_month_pf,
        save_charge=save_charge,
        punish_money=round(punish_money, 2)
    )


# 移峰填谷
async def power_peakcut_service(inline_id):
    dt = pendulum.now(tz="Asia/Shanghai")
    this_month_start_dt = pendulum.date(year=dt.year, month=dt.month, day=1)
    latest_12_months = [this_month_start_dt.subtract(months=i) for i in
                        range(1, 13)]
    latest_12_months.sort()

    monthstr_list = [str(date(i.year, i.month, day=1))[:10] for i in
                     latest_12_months]
    power_pcvf_map = await month_power_pcvf(inline_id, monthstr_list)
    pcvf_indexs = []
    for i in monthstr_list:
        score = power_pcvf_map.get(str(i), {}).get("score", "")
        if type(score) in [int, float]:
            pass
        else:
            score = ""
        pcvf_indexs.append(score)

    # now = datetime.now()
    # es_start_time = (
    #     pendulum.datetime(now.year, now.month, 1)
    #         .subtract(months=1)
    #         .strftime("%Y-%m-%dT%H:%M:%S+08:00")
    # )
    # es_end_time = pendulum.datetime(now.year, now.month, 1).strftime(
    #     "%Y-%m-%dT%H:%M:%S+08:00")
    # power_use_info = await inline_power_use_info(inline_id, es_start_time,
    #                                              es_end_time)
    now = datetime.now()
    start_time = (
        pendulum.datetime(now.year, now.month, 1)
            .subtract(months=1).strftime("%Y-%m-%d %H:%M:%S")
    )
    end_time = pendulum.datetime(now.year, now.month, 1).strftime(
        "%Y-%m-%d %H:%M:%S")
    power_use_info = await load_inline_power(inline_id, start_time, end_time)
    month_kwh = power_use_info.get("kwh") or 0
    month_charge = power_use_info.get("charge") or 0
    avg_price = month_kwh / month_charge if month_charge else ""

    last_month = monthstr_list[-1]
    save_charge = power_pcvf_map.get(str(last_month), {}).get("cost_save")

    inline = await tc_by_inline_id(inline_id)
    price_policy = await price_policy_by_cid(inline["cid"])
    if avg_price and price_policy["price_f"]:
        growth_percentage = round(
            (
                    (round(avg_price, 2) - round(price_policy["price_f"], 2))
                    / round(price_policy["price_f"], 2)
            )
            * 100,
            2,
        )
    else:
        growth_percentage = ""

    return PeakCutValleyFillResp(
        time_slots=[f"{str(i.year)[2:]}年{i.month}月" for i in latest_12_months],
        pcvf_indexs=pcvf_indexs,
        avg_price=avg_price,
        save_charge=save_charge,
        pcvf_index=power_pcvf_map.get(str(last_month), {}).get("score", ""),
        price_f=price_policy["price_f"],
        growth_percentage=growth_percentage,
    )


# 经济运行
async def power_save_service(inline_id):
    dt = pendulum.now(tz="Asia/Shanghai")
    this_month_start_dt = pendulum.date(year=dt.year, month=dt.month, day=1)
    latest_12_months = [this_month_start_dt.subtract(months=i) for i in
                        range(1, 13)]
    latest_12_months.sort()

    monthstr_list = [str(date(i.year, i.month, day=1))[:10] for i in
                     latest_12_months]
    power_loadrate_map = await month_power_loadrate(inline_id, monthstr_list)
    load_rates = []
    for i in monthstr_list:
        load_rate = power_loadrate_map.get(str(i), {}).get("mean_load_factor",
                                                           "")
        if type(load_rate) in [int, float]:
            load_rate = round(load_rate / 0.01, 2)
        else:
            load_rate = ""
        load_rates.append(load_rate)
    economic_operations = await get_economic_operations(inline_id,
                                                        monthstr_list[-1])
    economic_kpi_x_list = [
        i["kpi_x"] for i in economic_operations if
        type(i["kpi_x"]) in [int, float]
    ]
    economic_kpi_x = max(economic_kpi_x_list) if economic_kpi_x_list else ""
    total_economic_save = round(
        sum(
            [
                i["save_charge"]
                for i in economic_operations
                if i["save_charge"] and i["save_charge"] >= 0
            ]
        ),
        2,
    )
    save_charge = 0 if total_economic_save <= 0 else total_economic_save
    return PowerSaveResp(
        time_slots=[f"{str(i.year)[2:]}年{i.month}月" for i in latest_12_months],
        load_rates=load_rates,
        avg_load_rate=load_rates[-1],
        save_charge=save_charge if economic_kpi_x != "" else "",
    )