# -*- coding: utf-8 -*-
"""
calc distributed photovoltaic optimation for companies.
This is a tornado process and  responds request from web back server.
"""
import pendulum
import datetime
import pandas as pd
from pot_libs.mysql_util.mysql_util import MysqlUtil
from unify_api.constants import ENERGY_INVESTMENT_PV
from unify_api.modules.energy_optimize.service.energy_store_optimize import \
    AutoDic
from unify_api.modules.energy_optimize.service.ess_utils import \
    PricePolicyHelper
from unify_api.modules.energy_optimize.service.pv_optimation_tool import \
    PvOptimizationTool


class PhotovoltaicOptimize(object):
    def __init__(self, inlid):
        self._inlid = inlid

    async def calc_inline(self, pv_params):
        rlt = {'rlt_flag': True}
        inl_info = await self._get_inline_info()
        inline_vc = inl_info['inline_vc']
        cid = inl_info['cid']
        city = await self._get_company_city(cid)

        df_pv = await self._construct_pv_curve(city)  # construct df_pv
        if len(df_pv) == 0:
            rlt['rlt_flag'] = False
            rlt['message'] = "无光伏典型出力曲线,请联系工作人员!"
            return rlt
        max_dt = await self._find_kwh_max_day()  # 00:00:00 of the max kwh day
        if not max_dt:
            rlt['rlt_flag'] = False
            rlt['message'] = '暂无'
            return rlt

        pp = await self._get_company_price_policy(cid)
        pp_info_d = PricePolicyHelper.map_price_policy(pp, inline_vc,
                                                       max_dt.int_timestamp)
        time_str_d = PricePolicyHelper.quarter_chars_2_time_str(
            pp_info_d['quarters'])

        # construct pv_system
        price_type = pp_info_d['price_type']
        pv_system = await self._construct_pv_system(pv_params, price_type)
        # construct price
        price = self._construct_price(pv_params, pp_info_d, time_str_d)
        # construct env_benifit
        env_benifit = self._construct_env_benifit()
        # construct inline_var
        tc_runtime = inl_info['tc_runtime']
        inline_var = await self._construct_inline_var(tc_runtime)
        # construct df_load
        df_load = await self._construct_load_curve(max_dt)

        # logger.info('pv_system: %s', pv_system)
        # logger.info('price: %s', price)
        # logger.info('env_benifit: %s', env_benifit)
        # logger.info('inline_var: %s', inline_var)
        # logger.info('df_load: %s', df_load)
        # logger.info('df_pv: %s', df_pv)

        pv_ot = PvOptimizationTool(pv_system, price, env_benifit, df_load,
                                   df_pv, inline_var)
        pv_ot.output()

        # assemble return value
        rlt['install_cap'] = self._assemble_install_cap(pv_ot)
        rlt['invest_evaluate'] = self._assemble_invest_evaluate(pv_ot)
        rlt['opt_analysis'] = pv_ot.opt_analysis
        rlt['opt_curve'] = self._assemble_opt_curve(pv_ot)
        return rlt

    def _assemble_install_cap(self, pv_ot):
        install_cap = {
            'capacity': pv_ot.invest_capacity["capacity"],
            'install_space': pv_ot.pv_system["install_space"],
            'ttl_invest': pv_ot.invest_capacity["ttl_invest"],
            'first_year_ttl_kwh': pv_ot.invest_capacity["first_year_ttl_kwh"]
        }
        return install_cap

    def _assemble_invest_evaluate(self, pv_ot):
        cost_per_kwh = (pv_ot.price["rmb_per_wp"] -
                        pv_ot.price["first_install_subsidy"])
        invest_income = pv_ot.invest_evaluate["invest_income"]
        first_year_ttl_kwh = pv_ot.invest_capacity["first_year_ttl_kwh"]
        first_year_month_income = invest_income["first_year_month_income"]
        first_year_income = invest_income["first_year_income"]
        first_year_income_rate = invest_income["first_year_income_rate"]
        invest_income_year = invest_income["invest_income_year"]

        i_and_r = {
            'user_type': pv_ot.pv_system["user_type"],
            'ttl_invest': pv_ot.invest_capacity["ttl_invest"],
            'capacity': pv_ot.invest_capacity["capacity"],
            'cost_per_kwh': cost_per_kwh,
            'install_space': pv_ot.pv_system["install_space"],
            'peak_sunshine_hours': pv_ot.pv_system["peak_sunshine_hours"],
            'self_use_ratio': pv_ot.pv_system["self_use_ratio"],
            'self_use_price_discout': pv_ot.price["self_use_price_discout"],
            'sel_use_per_kwh': pv_ot.price["sel_use_per_kwh"],
            'local_subsidy': pv_ot.price["local_subsidy"],
            'first_install_subsidy': pv_ot.price['first_install_subsidy'],
            'state_subsidy': pv_ot.price["state_subsidy"],
            'first_year_ttl_kwh': first_year_ttl_kwh,
            'first_year_month_income': first_year_month_income,
            'first_year_income': first_year_income,
            'first_year_income_rate': first_year_income_rate,
            'invest_income_year': invest_income_year
        }

        env_benifit = pv_ot.invest_evaluate["env_benifit_per_year"]
        c_footprint = {
            'families': env_benifit['one_family_kwh'],
            'tree': env_benifit['tree'],
            'coal': env_benifit['Coal'],
            'CO2': env_benifit['CO2'],
            'SO2': env_benifit['SO2'],
            'NOx': env_benifit['NOx'],
            'smoke': env_benifit['Smoke'],
            'H2O': env_benifit['H2O']
        }

        invest_evaluate = {'i_and_r': i_and_r, 'carbon_footprint': c_footprint}
        return invest_evaluate

    def _assemble_opt_curve(self, pv_ot):
        rlt = []
        for idx, row in pv_ot.opt_curve.iterrows():
            tmpd = {}
            tmpd['quarter_time'] = idx
            tmpd['load_curve'] = row['load_curve']
            tmpd['load_pv_curve'] = row['load_pv_curve']
            tmpd['pv_curve'] = row['pv_curve']
            rlt.append(tmpd)
        return rlt

    async def _construct_pv_system(self, pv_params, price_type):
        area = pv_params['install_space']
        # ratio fixed, convert to decimal, web backend just pass us a
        # percent, we need to divide 100.
        ratio = pv_params['self_use_ratio'] / 100
        sql = ("select pv.peak_sunshine_hours from inline i, company c, "
               "algo_distributed_pv_quick_check_list pv "
               "where i.inlid=%s and i.cid=c.cid and "
               "c.city=pv.city;")
        async with MysqlUtil() as conn:
            hours = await conn.fetchone(sql, (self._inlid,)) or {}
        hours = hours.get("peak_sunshine_hours") or 0
        annual_hours = hours * 365

        # peak_sunshine_hours means annual_peak_sunshine_hours, the name
        # in algorithm is misleading
        pv_system = {
            "user_type": price_type,  # 工商业
            "install_space": area,  # 安装面积m2
            "efficiency": 0.8,  # 光伏发电效率
            "first_year_decay_rate": 2.5,  # 首年衰减率
            "first10_year_decay_rate": 0.8,  # 第2-10年衰减率
            "other_year_decay_rate": 0.7,  # 第11-25年衰减率
            "evaluate_year": 25,  # 评估年限
            "self_use_ratio": ratio,  # 自发自用比例
            "peak_sunshine_hours": annual_hours  # 年峰值日照小时数
        }
        return pv_system

    def _construct_price(self, pv_params, pp_info_d, time_str_d):
        cons_p = pv_params['rmb_per_wp']
        user_p = pv_params['sel_use_per_kwh']
        user_p_dis = pv_params['self_use_price_discout']
        first_sbsy = pv_params['first_install_subsidy']
        local_sbsy = pv_params['local_subsidy']
        local_year = pv_params['local_subsidy_year']
        price_md = pp_info_d['price_md']
        price_d = {
            "rmb_per_wp": cons_p,  # 建设单价
            "self_use_price_discout": user_p_dis,  # 自发自用电价折扣
            "sel_use_per_kwh": user_p,  # 自发自用电价
            # "state_subsidy": 0.42,  # 国家补贴
            "state_subsidy": 0.0,  # 国家补贴
            "local_subsidy": local_sbsy,  # 地方补贴
            "local_subsidy_year": local_year,  # 地方补贴年限
            "first_install_subsidy": first_sbsy,  # 初始安装补贴
            "coal_in_grid": 0.43,  # 脱硫电价
            "max_demand": price_md,
            "spfv_price": {}
        }
        sfpv_price = price_d['spfv_price']
        if pp_info_d['price_s']:
            sct = self._construct_section('s', pp_info_d, time_str_d)
            sfpv_price['section_s'] = sct
        if pp_info_d['price_p']:
            sct = self._construct_section('p', pp_info_d, time_str_d)
            sfpv_price['section_p'] = sct
        if pp_info_d['price_f']:
            sct = self._construct_section('f', pp_info_d, time_str_d)
            sfpv_price['section_f'] = sct
        if pp_info_d['price_v']:
            sct = self._construct_section('v', pp_info_d, time_str_d)
            sfpv_price['section_v'] = sct
        return price_d

    def _construct_env_benifit(self):
        env_benifit_param = {
            "one_family_kwh": 3600,  # 一户家庭一年用3600度电
            "CO2": 0.592,  # 二氧化碳排放kg/kWh
            "SO2": 0.0002,  # 二氧化硫排放kg/kWh
            "NOx": 0.00019,  # 氮氧化合物kg/kWh
            "Smoke": 0.00004,  # 烟尘kg/kWh
            "Coal": 0.3076,  # 煤耗kg/kWh
            "H2O": 0.06,  # 纯净水m3/kWh
            "tree": 18.3  # 1棵树1年可吸收18.3千克CO2
        }
        return env_benifit_param

    def _construct_section(self, p_char, pp_info_d, time_str_d):
        """ contruct section_x for price_d."""
        section = {'price': pp_info_d['price_' + p_char]}
        time_range_str = ';'.join(time_str_d[p_char])
        section['time_range'] = time_range_str
        return section

    async def _build_kwh_charge_sum_lastest_30(self, p_char):
        """ build es query sentance for get kwh sum and charge sum
        within lastest 30 days for specified p_char.
        """
        sql = f"""
         select sum(kwh) kwh,sum(charge) charge from inline_15min_power
         where inlid = %s and spfv = %s and create_time >= % s and create_time
         < %s
        """
        dt = pendulum.now()
        dt_1_month_ago = dt.subtract(days=30)
        start_time = dt_1_month_ago.format("YYYY-MM-DD HH:mm:ss")
        end_time = dt.format("YYYY-MM-DD HH:mm:ss")
        async with MysqlUtil() as conn:
            result = await conn.fetchone(sql, args=(self._inlid, p_char,
                                                    start_time, end_time))
        return result or {}

    async def _construct_inline_var(self, inline_tc):
        inline_var = {'inline_capacity': inline_tc}

        result = await self._build_kwh_charge_sum_lastest_30("s")
        # search_rlt = self._es.search(inline_15min_power_esindex, q)
        charge_s = result.get("charge") or 0
        kwh_s = result.get("kwh") or 0

        result = await self._build_kwh_charge_sum_lastest_30("p")
        # search_rlt = self._es.search(inline_15min_power_esindex, q)

        charge_p = result.get("charge") or 0
        kwh_p = result.get("kwh") or 0
        # add 's' and 'p', because algorithm needs these
        charge_sp = charge_s + charge_p
        kwh_sp = kwh_s + kwh_p
        inline_var['peak_charge'] = charge_sp
        inline_var['peak_kwh'] = kwh_sp

        result = await self._build_kwh_charge_sum_lastest_30("f")
        # search_rlt = self._es.search(inline_15min_power_esindex, q)
        charge_f = result.get("charge") or 0
        kwh_f = result.get("kwh") or 0
        inline_var['flat_charge'] = charge_f
        inline_var['flat_kwh'] = kwh_f
        return inline_var

    async def _build_load_curve(self, start_dt):
        end_dt = start_dt.add(days=1)
        start_time = start_dt.format("YYYY-MM-DD HH:mm:ss")
        end_time = end_dt.format("YYYY-MM-DD HH:mm:ss")
        sql = f"""
            select create_time,p from inline_15min_power
            where inlid = %s and create_time >= %s and create_time < %s
            order by create_time asc limit 100
        """

        async with MysqlUtil() as conn:
            results = await conn.fetchall(sql, args=(self._inlid, start_time,
                                                     end_time))
        return results or []

    async def _construct_load_curve(self, start_dt):
        hits_list = await self._build_load_curve(start_dt)
        # hits_list is already sorted by quarter_time asc
        kw_list = []
        for item in hits_list:
            kw_list.append({
                'quarter_time': item.get('create_time'),
                'load_curve': item.get('p')
            })
        df = pd.DataFrame(kw_list)
        return df

    async def _construct_pv_curve(self, city):
        sql = "select hour, p from algo_distributed_pv where city=%s " \
              "order by hour asc"
        async with MysqlUtil() as conn:
            sql_rlt = await conn.fetchall(sql, args=(city,))
        pv_list = []
        for item in sql_rlt:
            dt = pendulum.datetime(2019, 1, 1, tz='Asia/Shanghai')
            dt = dt + item['hour']  # item['hour'] is a timedelta object
            qrt_dt = datetime.datetime(year=dt.year, month=dt.month,
                                       day=dt.day, hour=dt.hour,
                                       minute=dt.minute, second=dt.second)
            pv_list.append({'quarter_time': qrt_dt, 'pv_curve': item['p']})
        df = pd.DataFrame(pv_list)
        return df

    async def _get_inline_info(self):
        """ get inline_vc, tc_runtime, cid from redis.
        :return: a dict
        """
        sql = "SELECT inline_vc, tc_runtime, cid cid from " \
              "inline where inlid = %s"
        async with MysqlUtil() as conn:
            info = await conn.fetchone(sql, args=(self._inlid,))
        rlt = {'inline_vc': info['inline_vc'],
               'tc_runtime': info['tc_runtime'],
               'cid': info['cid']}
        return rlt

    async def _get_company_price_policy(self, cid):
        result = AutoDic()
        sql = 'SELECT * FROM price_policy where cid = %s'
        async with MysqlUtil() as conn:
            policies = await conn.fetchall(sql, (cid,))
        for policy in policies:
            result[str(policy['inline_vc'])][str(policy['start_month'])][
                policy['time_range']] = policy
        return result

    async def _get_company_city(self, cid):
        sql = "SELECT city from company where cid = %s"
        async with MysqlUtil() as conn:
            c_info = await conn.fetchone(sql, (cid,))
        # company_j = self._r_cache.hget(company_hashname, str(cid))
        # c_info = json.loads(company_j)
        return c_info['city']

    async def _find_kwh_max_day(self):
        sql = f"""
            select create_time from inline_1day_power
            where inlid = %s and create_time >=%s and create_time < %s
            order by kwh desc limit 1;
        """
        # search_rlt = self._es.search(inline_1day_power_esindex, q)
        dt = pendulum.now()
        dt_half_year_ago = dt.subtract(months=6)
        start_time = dt_half_year_ago.format("YYYY-MM-DD HH:mm:ss")
        end_time = dt.format("YYYY-MM-DD HH:mm:ss")
        async with MysqlUtil() as conn:
            result = await conn.fetchone(sql, args=(self._inlid,
                                                    start_time,
                                                    end_time))
            if not result:
                return None
        max_dt = result.get("create_time").strftime("%Y-%m-%d %H:%M:%S")
        return pendulum.parse(max_dt)


async def pv_out_result(inlid, params):
    """结果输出函数"""
    # get cid
    sql = "select cid from inline where inlid = %s"
    async with MysqlUtil() as conn:
        cid_info = await conn.fetchone(sql=sql, args=(inlid,))
    cid = cid_info.get("cid")
    # get proxy_id
    sql = "select cpm.proxy from company c inner join company_proxy_map cpm " \
          "on cpm.cid=c.cid where c.cid = %s"
    async with MysqlUtil() as conn:
        proxy_res = await conn.fetchone(sql, args=(cid,))
    proxy_id = proxy_res["proxy"]
    sql = "insert into energy_investment_analysis_record " \
          "(cid, analysis_type, inlid, proxy, time) " \
          "values (%s, %s, %s, %s, %s)"
    ts = pendulum.now().int_timestamp
    async with MysqlUtil() as conn:
        await conn.execute(sql, args=(
            cid, ENERGY_INVESTMENT_PV, inlid, proxy_id, ts))
    # handle request
    pv_optimize = PhotovoltaicOptimize(inlid)
    algo_rlt = await pv_optimize.calc_inline(params)
    return algo_rlt