#!/usr/bin/python
# -*- coding: utf-8 -*-

import pandas as pd
import numpy as np
import copy
import datetime
import numpy_financial as npf


class EssEvaluateTool(object):
    """储能测算工具
    price= {
                "epc_price": 1.4,       #epc单价,元/Wh
                "bank_interest": 0.085, # 折现率
                "capacity_price": 23.0,      #容量电价
                "max_demand_price": 32.0,    #需量电价
                "peak_valley_price": 0.9,       #峰谷价差,元/kWh
                "peak_flat_price": 0.3,       #峰平价差,元/kWh
                "kwh_subsidy": 0.3,       #度电补贴,元/kWh
                #"section_s":{"time_range": "14:00-17:00;19:00-22:00"},
                "section_f":{"time_range": "12:00-17:00;19:00-22:00"},
                "section_p":{"time_range": "08:00-12:00;17:00-19:00;22:00-24:00"},
                "section_v":{"time_range": "00:00-8:00"}
                }
    ess_system ={
                "capacity": 40000.0,   #工厂容量,kVA,
                "rule":1, # 一充一放或两充两放
                "install_capacity":5000, # kWh,100-5000,000kWh
                "bat_efficiency": 0.95,         #电池效率
                "pcs_efficiency": 0.95,         #pcs转换效率
                "DOD": 0.9, #放电深度
                "decay_rate": 0.03, #衰减率

                "maintenance_ratio_per_year":0.02, # 年运维费用占静态投资额比例
                "year_use_days": 330.0, #一年可利用时间
                "evaluate_year": 10,  #评估年限
                "subsidy_year": 10,  #补贴年限
                #"invest_income_rate": (15, 12, 10, 8, 6), #投资收益率
                "loop_time": 5000 #循环次数
                }
    max_demand_var={"flag":True, "pmax":0}
    df_curve:pandas.Series
    """

    def __init__(self, ess_system, price, max_demand_var, df_curve):
        self.ess_system = ess_system
        self.price = price
        self.max_demand_var = max_demand_var
        self.df_curve = df_curve
        self.all_index_sections = 0
        self.sf_flag = False
        self.time_sections = self._check_time_section()
        self.curve = self._merge_curve(df_curve)
        self.invest_capacity = self.cal_invest_capacity()
        self.pcs_capacity = self.invest_capacity / 2
        self.invest_charge = self.cal_invest_charge()
        self.maintenance_year_charge = self.cal_maintenance_year_charge()
        self.first_year_dc_kwh = self.cal_first_year_dc_kwh()
        self.month_average_dc_kwh = self.first_year_dc_kwh / 12
        self.first_year_dc_benefit = self.cal_first_year_dc_benefit()
        self.month_dc_benefit = self.first_year_dc_benefit / 12
        self.first_year_subsidy = self.cal_first_year_subsidy()
        self.max_demand_benifit = self.cal_max_demand_benefit()
        self.evaluate_table = 0
        self.opt_curve = 0
        self.static_period = 0
        self.dynamic_period = 0
        self.total_subsidy = 0
        self.irr = 0

    def cal_invest_capacity(self):
        rst = self.ess_system["install_capacity"]
        if rst > self.ess_system["capacity"] / 2:
            rst = self.ess_system["capacity"] / 2
        return rst

    def cal_invest_charge(self):
        rst = self.invest_capacity * self.price["epc_price"] * 1000
        return rst

    def cal_maintenance_year_charge(self):
        rst = self.ess_system[
                  "maintenance_ratio_per_year"] * self.invest_charge
        return rst

    def cal_first_year_dc_benefit(self):
        kwh = self.first_year_dc_kwh
        if self.ess_system["rule"] <= 1.5:
            rst = self.price["peak_valley_price"] * kwh
        else:
            rst = (self.price["peak_valley_price"] + self.price[
                "peak_flat_price"]) * kwh
        return rst

    def cal_first_year_dc_kwh(self):
        kwh = self.invest_capacity * self.ess_system["DOD"] * self.ess_system[
            "pcs_efficiency"] * self.ess_system["bat_efficiency"]
        if self.ess_system["rule"] <= 1.5:
            rst = kwh * self.ess_system["year_use_days"]
        else:
            rst = kwh * self.ess_system["year_use_days"]
        return rst

    def cal_first_year_subsidy(self):
        kwh = self.first_year_dc_kwh
        rst = self.price["kwh_subsidy"] * kwh
        return rst

    def cal_max_demand_benefit(self):
        if self.max_demand_var["flag"]:
            rst = self.invest_capacity / 2 * self.price[
                "max_demand_price"] * 12
        else:
            base_charge = self.price["capacity_price"] * self.ess_system[
                "capacity"]
            max_demand_charge = self.price["max_demand_price"] * (
                        self.max_demand_var["pmax"] - self.invest_capacity / 2)
            if base_charge < max_demand_charge:
                rst = 0
            else:
                rst = (base_charge - max_demand_charge) * 12
        return rst

    def _merge_curve(self, df_curve):
        df = copy.deepcopy(self.time_sections)  # index,quarter_time,spfv_flag
        df["quarter_time"] = df["quarter_time"].apply(
            lambda x: datetime.datetime.strftime(x, "%H:%M:%S"))
        load_curve = copy.deepcopy(df_curve)
        load_curve["quarter_time"] = load_curve["quarter_time"].apply(
            lambda x: datetime.datetime.strftime(x, "%H:%M:%S"))
        df_new = pd.merge(df[["quarter_time", "spfv_flag"]],
                          load_curve[["quarter_time", "p"]], how="left",
                          on="quarter_time")
        df_new.rename(columns={"p": "load_curve"}, inplace=True)
        return df_new

    def time_15min_parse(self, time_range, key):
        time_sections = time_range.split(";")
        sections = []

        str_sections1 = []
        index_section = {}

        for section in time_sections:
            str_sections = []
            section_range = section.split("-")
            start_time = pd.Timestamp(section_range[0])
            if section_range[1] == "24:00":
                section_range[1] = "00:00"
                stop_time = pd.Timestamp(section_range[1]) + pd.Timedelta(
                    days=1)
            else:
                stop_time = pd.Timestamp(section_range[1])
            current_time = start_time  # + pd.Timedelta(seconds=900)
            while True:
                if current_time < stop_time:
                    sections.append(current_time)
                    str_sections.append(current_time.strftime("%H:%M:%S"))
                    current_time += pd.Timedelta(seconds=900)
                else:
                    break
            str_sections1.append(str_sections)
        index_section[key] = str_sections1
        return sections, index_section

    def _check_time_section(self):
        param = {"section_s": 3, "section_p": 2, "section_f": 1,
                 "section_v": 0}
        hour = []
        spfv_flag = []
        all_index_sections = {}
        for key in self.price.keys():
            if key in param.keys():
                time_point, index_section = self.time_15min_parse(
                    self.price[key]["time_range"], key)
                hour.extend(time_point)
                num_15mins = len(time_point)
                spfv_flag.extend([param[key]] * num_15mins)
                all_index_sections.update(index_section)

        self.all_index_sections = all_index_sections

        time_section = pd.DataFrame(
            {"quarter_time": hour, "spfv_flag": spfv_flag})
        time_section = time_section.sort_values(by="quarter_time")
        time_section.index = range(96)
        index_sf = list(time_section["spfv_flag"]).index(1)
        if index_sf:
            if time_section["spfv_flag"][index_sf - 1] == 0:
                self.sf_flag = True

        return time_section

    def cal_opt_curve(self):
        df = copy.deepcopy(self.curve)
        df.set_index("quarter_time", inplace=True)
        df["bat_curve"] = 0
        p_charge = 4 * self.invest_capacity / len(
            self.all_index_sections["section_v"][0])
        if p_charge > self.invest_capacity / 2:
            p_charge = self.invest_capacity / 2
        df.loc[self.all_index_sections["section_v"][0], "bat_curve"] = p_charge

        if self.ess_system["rule"] <= 1.5:
            if "section_s" in self.all_index_sections.keys():
                p_discharge = -4 * self.invest_capacity / len(
                    self.all_index_sections["section_s"][0])
                if -p_discharge > self.invest_capacity / 2:
                    p_discharge = -self.invest_capacity / 2
                df.loc[self.all_index_sections["section_s"][
                           0], "bat_curve"] = p_discharge
            else:
                p_discharge = -4 * self.invest_capacity / len(
                    self.all_index_sections["section_p"][0])
                if -p_discharge > self.invest_capacity / 2:
                    p_discharge = -self.invest_capacity / 2
                df.loc[self.all_index_sections["section_p"][
                           0], "bat_curve"] = p_discharge
        else:
            p_charge = 4 * self.invest_capacity / len(
                self.all_index_sections["section_f"][0])
            if p_charge > self.invest_capacity / 2:
                p_charge = self.invest_capacity / 2

            if self.sf_flag:
                df.loc[self.all_index_sections["section_f"][
                           1], "bat_curve"] = p_charge
            else:
                df.loc[self.all_index_sections["section_f"][
                           0], "bat_curve"] = p_charge

            if "section_s" in self.all_index_sections.keys():
                p_discharge = -4 * self.invest_capacity / len(
                    self.all_index_sections["section_s"][0])
                if -p_discharge > self.invest_capacity / 2:
                    p_discharge = -self.invest_capacity / 2
                df.loc[self.all_index_sections["section_s"][
                           0], "bat_curve"] = p_discharge
                p_discharge = -4 * self.invest_capacity / len(
                    self.all_index_sections["section_p"][0])
                if -p_discharge > self.invest_capacity / 2:
                    p_discharge = -self.invest_capacity / 2
                df.loc[self.all_index_sections["section_p"][
                           0], "bat_curve"] = p_discharge
            else:
                p_discharge = -4 * self.invest_capacity / len(
                    self.all_index_sections["section_p"][0])
                if -p_discharge > self.invest_capacity / 2:
                    p_discharge = -self.invest_capacity / 2
                df.loc[self.all_index_sections["section_p"][
                           0], "bat_curve"] = p_discharge
                p_discharge = -4 * self.invest_capacity / len(
                    self.all_index_sections["section_p"][1])
                if -p_discharge > self.invest_capacity / 2:
                    p_discharge = -self.invest_capacity / 2
                df.loc[self.all_index_sections["section_p"][
                           1], "bat_curve"] = p_discharge
        df["load_bat_curve"] = df["load_curve"] + df["bat_curve"]
        self.opt_curve = df[["load_curve", "bat_curve", "load_bat_curve"]]

    def cal_evaluate_table(self):
        table_title = ["年份", "剩余容量", "固定成本", "累计充放数", "充放电收益", "补贴收益",
                       "维护成本", "累计总成本", "本年收益", "累计收益"]
        decay_rate = ([0] + [self.ess_system["decay_rate"]] * (
                    self.ess_system["evaluate_year"] - 1))
        bank_interest = [1 / (1 + self.price["bank_interest"])] * \
                        self.ess_system["evaluate_year"]
        charge_output = [- self.invest_charge] + [0] * (
                    self.ess_system["evaluate_year"] - 1)
        delta_year = max(
            self.ess_system["evaluate_year"] - self.ess_system["subsidy_year"],
            0)
        subsidy_coef = [1] * self.ess_system["subsidy_year"] + [0] * delta_year
        data = pd.DataFrame(
            {"年份": range(1, (self.ess_system["evaluate_year"] + 1)),
             "年衰减率": decay_rate, "固定成本": charge_output, "折现率": bank_interest,
             "补贴系数": subsidy_coef},
            columns=["年份", "年衰减率", "固定成本", "折现率", "补贴系数"])
        data["剩余容量"] = 1 - data["年衰减率"]
        data["剩余容量"] = data["剩余容量"].cumprod()
        data["累计充放数"] = self.ess_system["year_use_days"] * self.ess_system[
            "rule"]
        data["累计充放数"] = data["累计充放数"].cumsum()
        data["维护成本"] = -self.maintenance_year_charge
        index_last_temp = data["累计充放数"][
            data["累计充放数"] > self.ess_system["loop_time"]]
        if len(index_last_temp) > 0:
            index_last = index_last_temp.index[0]
            data.loc[index_last, "累计充放数"] = self.ess_system["loop_time"]
            data.loc[index_last, "维护成本"] = (-(
                        self.ess_system["loop_time"] - data.loc[
                    index_last - 1, "累计充放数"]) /
                                            self.ess_system["year_use_days"] /
                                            self.ess_system[
                                                "rule"] * self.maintenance_year_charge)
        else:
            index_last = len(data)

        data.loc[
            data["累计充放数"] > self.ess_system["loop_time"], ["剩余容量", "累计充放数",
                                                           "维护成本"]] = 0
        data["折现率"] = data["折现率"].cumprod()
        data["充放电收益"] = data["剩余容量"] * self.first_year_dc_benefit
        data["补贴收益"] = data["剩余容量"] * self.first_year_subsidy * data["补贴系数"]
        self.total_subsidy = data["补贴收益"].sum()

        data["累计总成本"] = (data["维护成本"] + data["固定成本"]).cumsum()
        data["本年收益"] = data["充放电收益"] + data["维护成本"] + data["补贴收益"]
        data["本年折现收益"] = data["本年收益"] * data["折现率"]
        data["累计收益"] = (data["本年收益"] + data["固定成本"]).cumsum()
        data["折现累计收益"] = (data["本年折现收益"] + data["固定成本"]).cumsum()

        static_temp = data["累计收益"][data["累计收益"] > 0]
        if len(static_temp) > 0:
            static_index = list(static_temp.index)[0]
            static_index = static_index - 1 if static_index > 0 else 0
            self.static_period = data.loc[static_index, "年份"] - data.loc[
                static_index, "累计收益"] / (data.loc[
                                             static_index + 1, "本年收益"] + 0.001)
        else:
            self.static_period = -1

        dynamic_temp = data["折现累计收益"][data["折现累计收益"] > 0]
        if len(dynamic_temp) > 0:
            dynamic_index = list(dynamic_temp.index)[0]
            dynamic_index = dynamic_index - 1 if dynamic_index > 0 else 0
            self.dynamic_period = data.loc[dynamic_index, "年份"] - data.loc[
                dynamic_index, "折现累计收益"] / (data.loc[
                                                dynamic_index + 1, "本年折现收益"] + 0.001)
        else:
            self.dynamic_period = -1

        self.irr = npf.irr([- self.invest_charge] + list(data["本年收益"].values))
        return data.loc[:index_last, table_title]

    @staticmethod
    def fix_decimal_points(v, decimal_num=4):
        """ 将浮点型的值固定小数位, 默认保留4位小数位
        :param v: 浮点型的值
        """
        rlt = v
        fmt = "%.df"
        fmt = fmt.replace('d', str(decimal_num))
        if isinstance(v, float):
            s = fmt % v
            rlt = float(s)
        return rlt

    def output(self):
        self.input_param_process()
        self.cal_opt_curve()
        data = self.cal_evaluate_table()
        for key in data.columns:
            data[key] = data[key].apply(lambda x: self.fix_decimal_points(x))
        for key in ["load_curve", "bat_curve"]:
            self.opt_curve[key] = self.opt_curve[key].apply(
                lambda x: self.fix_decimal_points(x))
        self.evaluate_table = data

    def input_param_process(self):
        if self.ess_system["rule"] <= 1.5:
            self.ess_system["rule"] = 1
        elif self.ess_system["rule"] > 1.5:
            self.ess_system["rule"] = 2

        if self.ess_system["bat_efficiency"] <= 0:
            self.ess_system["bat_efficiency"] = 0.0
        elif self.ess_system["bat_efficiency"] >= 1:
            self.ess_system["bat_efficiency"] = 1

        if self.ess_system["pcs_efficiency"] <= 0:
            self.ess_system["pcs_efficiency"] = 0.0
        elif self.ess_system["pcs_efficiency"] >= 1:
            self.ess_system["pcs_efficiency"] = 1

        if self.ess_system["DOD"] <= 0:
            self.ess_system["DOD"] = 0.0
        elif self.ess_system["DOD"] >= 1:
            self.ess_system["DOD"] = 1

        if self.ess_system["decay_rate"] <= 0:
            self.ess_system["decay_rate"] = 0.0
        elif self.ess_system["decay_rate"] >= 1:
            self.ess_system["decay_rate"] = 1

        if self.ess_system["maintenance_ratio_per_year"] <= 0:
            self.ess_system["maintenance_ratio_per_year"] = 0.0
        elif self.ess_system["maintenance_ratio_per_year"] >= 1:
            self.ess_system["maintenance_ratio_per_year"] = 1

        if self.ess_system["subsidy_year"] >= self.ess_system["evaluate_year"]:
            self.ess_system["subsidy_year"] = self.ess_system["evaluate_year"]


if __name__ == "__main__":

    pd.set_option('display.max_rows', 200)
    import os

    path = os.path.split(__file__)[0]
    os.chdir(path)
    price = {
        "epc_price": 1.4,  # epc单价,元/Wh
        "bank_interest": 0.085,  # 折现率
        "capacity_price": 23.0,  # 容量电费
        "max_demand_price": 32.0,  # 需量电费
        "peak_valley_price": 0.9,  # 峰谷价差,元/kWh
        "peak_flat_price": 0.3,  # 峰平价差,元/kWh
        "kwh_subsidy": 0.1,  # 度电补贴
        "section_s": {"time_range": "10:00-12:00;17:00-18:00"},
        "section_f": {"time_range": "12:00-13:00;19:00-22:00"},
        "section_p": {"time_range": "13:00-17:00;18:00-19:00"},
        "section_v": {"time_range": "00:00-10:00;22:00-24:00"}
    }
    ess_system = {
        "capacity": 40000.0,  # 工厂容量,kVA,
        "rule": 2,  # 一充一放或两充两放
        "install_capacity": 5000,  # kWh,100-5000,000kWh
        "bat_efficiency": 0.95,  # 电池效率
        "pcs_efficiency": 0.95,  # pcs转换效率
        "DOD": 0.9,  # 放电深度
        "decay_rate": 0.03,  # 衰减率

        "maintenance_ratio_per_year": 0.02,  # 年运维费用占静态投资额比例
        "year_use_days": 330.0,  # 一年可利用时间
        "evaluate_year": 7,  # 评估年限
        "subsidy_year": 10,  # 补贴年限
        # "invest_income_rate": (15, 12, 10, 8, 6), #投资收益率
        "loop_time": 5000  # 循环次数
    }
    max_demand_var = {"flag": True, "pmax": 0}

    df_load = {}
    df_load["quarter_time"] = pd.date_range("2019-01-01", "2019-01-02",
                                            freq="0.25H")[:-1]
    df_load["p"] = ([2000.0] * 24 + [2050.0, 2100.0, 2150.0, 2200.0] + [2650.0,
                                                                        3100.0,
                                                                        3550.0,
                                                                        4000.0] + [
                        4500.0, 5200.0, 6000.0] + [6800.0, 7900.0, 8600.0,
                                                   8800.0] + [9200.0, 8500.0,
                                                              7700.0, 7200.0] +
                    [7000.0, 6900.0, 6800.0, 6700.0] + list(
                np.arange(6500.0, 7501.0, 125.0)) + list(
                np.arange(7500.0, 7001.0, -62.5)) + list(
                np.arange(7000.0, 4001.0, -375.0)) + list(
                np.arange(4000.0, 2001.0, -83.3)))
    df_curve = pd.DataFrame(df_load)
    # df_curve = pd.read_csv("load1.csv", index_col=0)
    df_curve.loc[:, "quarter_time"] = pd.to_datetime(
        df_curve.loc[:, "quarter_time"])
    import time

    t1 = time.time()
    obj = EssEvaluateTool(ess_system, price, max_demand_var, df_curve)
    obj.output()

    print(
        "**********************************************************************************************************")
    print(obj.evaluate_table)
    print(obj.evaluate_table["累计充放数"])
    print(obj.max_demand_benifit)
    print(obj.invest_capacity)
    print(obj.invest_charge)
    print(obj.static_period)
    print(obj.dynamic_period)
    print(obj.irr)
    print(obj.total_subsidy)
    print(obj.pcs_capacity)
    print(obj.month_average_dc_kwh)
    print(obj.month_dc_benefit)